]> jfr.im git - solanum.git/blob - librb/src/commio.c
OpenSSL: Initialise if LibreSSL
[solanum.git] / librb / src / commio.c
1 /*
2 * ircd-ratbox: A slightly useful ircd.
3 * commio.c: Network/file related functions
4 *
5 * Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
6 * Copyright (C) 1996-2002 Hybrid Development Team
7 * Copyright (C) 2002-2005 ircd-ratbox development team
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
22 * USA
23 *
24 */
25
26 #include <librb_config.h>
27 #include <rb_lib.h>
28 #include <commio-int.h>
29 #include <commio-ssl.h>
30 #include <event-int.h>
31 #ifdef HAVE_SYS_UIO_H
32 #include <sys/uio.h>
33 #endif
34 #define HAVE_SSL 1
35
36 #ifndef MSG_NOSIGNAL
37 #define MSG_NOSIGNAL 0
38 #endif
39
40
41 struct timeout_data
42 {
43 rb_fde_t *F;
44 rb_dlink_node node;
45 time_t timeout;
46 PF *timeout_handler;
47 void *timeout_data;
48 };
49
50 rb_dlink_list *rb_fd_table;
51 static rb_bh *fd_heap;
52
53 static rb_dlink_list timeout_list;
54 static rb_dlink_list closed_list;
55
56 static struct ev_entry *rb_timeout_ev;
57
58
59 static const char *rb_err_str[] = { "Comm OK", "Error during bind()",
60 "Error during DNS lookup", "connect timeout",
61 "Error during connect()",
62 "Comm Error",
63 "Error with SSL"
64 };
65
66 /* Highest FD and number of open FDs .. */
67 static int number_fd = 0;
68 int rb_maxconnections = 0;
69
70 static PF rb_connect_timeout;
71 static PF rb_connect_tryconnect;
72 #ifdef RB_IPV6
73 static void mangle_mapped_sockaddr(struct sockaddr *in);
74 #endif
75
76 #ifndef HAVE_SOCKETPAIR
77 static int rb_inet_socketpair(int d, int type, int protocol, rb_platform_fd_t sv[2]);
78 static int rb_inet_socketpair_udp(rb_fde_t **newF1, rb_fde_t **newF2);
79 #endif
80
81 static inline rb_fde_t *
82 add_fd(rb_platform_fd_t fd)
83 {
84 rb_fde_t *F = rb_find_fd(fd);
85
86 /* look up to see if we have it already */
87 if(F != NULL)
88 return F;
89
90 F = rb_bh_alloc(fd_heap);
91 F->fd = fd;
92 rb_dlinkAdd(F, &F->node, &rb_fd_table[rb_hash_fd(fd)]);
93 return (F);
94 }
95
96 static inline void
97 remove_fd(rb_fde_t *F)
98 {
99 if(F == NULL || !IsFDOpen(F))
100 return;
101
102 rb_dlinkMoveNode(&F->node, &rb_fd_table[rb_hash_fd(F->fd)], &closed_list);
103 }
104
105 static void
106 free_fds(void)
107 {
108 rb_fde_t *F;
109 rb_dlink_node *ptr, *next;
110 RB_DLINK_FOREACH_SAFE(ptr, next, closed_list.head)
111 {
112 F = ptr->data;
113
114 number_fd--;
115
116 #ifdef _WIN32
117 if(F->type & (RB_FD_SOCKET | RB_FD_PIPE))
118 closesocket(F->fd);
119 else
120 #endif
121 close(F->fd);
122
123 rb_dlinkDelete(ptr, &closed_list);
124 rb_bh_free(fd_heap, F);
125 }
126 }
127
128 /* 32bit solaris is kinda slow and stdio only supports fds < 256
129 * so we got to do this crap below.
130 * (BTW Fuck you Sun, I hate your guts and I hope you go bankrupt soon)
131 */
132
133 #if defined (__SVR4) && defined (__sun)
134 static void
135 rb_fd_hack(int *fd)
136 {
137 int newfd;
138 if(*fd > 256 || *fd < 0)
139 return;
140 if((newfd = fcntl(*fd, F_DUPFD, 256)) != -1)
141 {
142 close(*fd);
143 *fd = newfd;
144 }
145 return;
146 }
147 #else
148 #define rb_fd_hack(fd)
149 #endif
150
151
152 /* close_all_connections() can be used *before* the system come up! */
153
154 static void
155 rb_close_all(void)
156 {
157 #ifndef _WIN32
158 int i;
159
160 /* XXX someone tell me why we care about 4 fd's ? */
161 /* XXX btw, fd 3 is used for profiler ! */
162 for(i = 3; i < rb_maxconnections; ++i)
163 {
164 close(i);
165 }
166 #endif
167 }
168
169 /*
170 * get_sockerr - get the error value from the socket or the current errno
171 *
172 * Get the *real* error from the socket (well try to anyway..).
173 * This may only work when SO_DEBUG is enabled but its worth the
174 * gamble anyway.
175 */
176 int
177 rb_get_sockerr(rb_fde_t *F)
178 {
179 int errtmp;
180 int err = 0;
181 rb_socklen_t len = sizeof(err);
182
183 if(!(F->type & RB_FD_SOCKET))
184 return errno;
185
186 rb_get_errno();
187 errtmp = errno;
188
189 #ifdef SO_ERROR
190 if(F != NULL
191 && !getsockopt(rb_get_fd(F), SOL_SOCKET, SO_ERROR, (char *)&err, (rb_socklen_t *) & len))
192 {
193 if(err)
194 errtmp = err;
195 }
196 errno = errtmp;
197 #endif
198 return errtmp;
199 }
200
201 /*
202 * rb_getmaxconnect - return the max number of connections allowed
203 */
204 int
205 rb_getmaxconnect(void)
206 {
207 return (rb_maxconnections);
208 }
209
210 /*
211 * set_sock_buffers - set send and receive buffers for socket
212 *
213 * inputs - fd file descriptor
214 * - size to set
215 * output - returns true (1) if successful, false (0) otherwise
216 * side effects -
217 */
218 int
219 rb_set_buffers(rb_fde_t *F, int size)
220 {
221 if(F == NULL)
222 return 0;
223 if(setsockopt
224 (F->fd, SOL_SOCKET, SO_RCVBUF, (char *)&size, sizeof(size))
225 || setsockopt(F->fd, SOL_SOCKET, SO_SNDBUF, (char *)&size, sizeof(size)))
226 return 0;
227 return 1;
228 }
229
230 /*
231 * set_non_blocking - Set the client connection into non-blocking mode.
232 *
233 * inputs - fd to set into non blocking mode
234 * output - 1 if successful 0 if not
235 * side effects - use POSIX compliant non blocking and
236 * be done with it.
237 */
238 int
239 rb_set_nb(rb_fde_t *F)
240 {
241 int nonb = 0;
242 int res;
243 rb_platform_fd_t fd;
244 if(F == NULL)
245 return 0;
246 fd = F->fd;
247
248 if((res = rb_setup_fd(F)))
249 return res;
250 #ifdef O_NONBLOCK
251 nonb |= O_NONBLOCK;
252 res = fcntl(fd, F_GETFL, 0);
253 if(-1 == res || fcntl(fd, F_SETFL, res | nonb) == -1)
254 return 0;
255 #else
256 nonb = 1;
257 res = 0;
258 if(ioctl(fd, FIONBIO, (char *)&nonb) == -1)
259 return 0;
260 #endif
261
262 return 1;
263 }
264
265 /*
266 * rb_settimeout() - set the socket timeout
267 *
268 * Set the timeout for the fd
269 */
270 void
271 rb_settimeout(rb_fde_t *F, time_t timeout, PF * callback, void *cbdata)
272 {
273 struct timeout_data *td;
274
275 if(F == NULL)
276 return;
277
278 lrb_assert(IsFDOpen(F));
279 td = F->timeout;
280 if(callback == NULL) /* user wants to remove */
281 {
282 if(td == NULL)
283 return;
284 rb_dlinkDelete(&td->node, &timeout_list);
285 rb_free(td);
286 F->timeout = NULL;
287 if(rb_dlink_list_length(&timeout_list) == 0)
288 {
289 rb_event_delete(rb_timeout_ev);
290 rb_timeout_ev = NULL;
291 }
292 return;
293 }
294
295 if(F->timeout == NULL)
296 td = F->timeout = rb_malloc(sizeof(struct timeout_data));
297
298 td->F = F;
299 td->timeout = rb_current_time() + timeout;
300 td->timeout_handler = callback;
301 td->timeout_data = cbdata;
302 rb_dlinkAdd(td, &td->node, &timeout_list);
303 if(rb_timeout_ev == NULL)
304 {
305 rb_timeout_ev = rb_event_add("rb_checktimeouts", rb_checktimeouts, NULL, 5);
306 }
307 }
308
309 /*
310 * rb_checktimeouts() - check the socket timeouts
311 *
312 * All this routine does is call the given callback/cbdata, without closing
313 * down the file descriptor. When close handlers have been implemented,
314 * this will happen.
315 */
316 void
317 rb_checktimeouts(void *notused)
318 {
319 rb_dlink_node *ptr, *next;
320 struct timeout_data *td;
321 rb_fde_t *F;
322 PF *hdl;
323 void *data;
324
325 RB_DLINK_FOREACH_SAFE(ptr, next, timeout_list.head)
326 {
327 td = ptr->data;
328 F = td->F;
329 if(F == NULL || !IsFDOpen(F))
330 continue;
331
332 if(td->timeout < rb_current_time())
333 {
334 hdl = td->timeout_handler;
335 data = td->timeout_data;
336 rb_dlinkDelete(&td->node, &timeout_list);
337 F->timeout = NULL;
338 rb_free(td);
339 hdl(F, data);
340 }
341 }
342 }
343
344 static void
345 rb_accept_tryaccept(rb_fde_t *F, void *data)
346 {
347 struct rb_sockaddr_storage st;
348 rb_fde_t *new_F;
349 rb_socklen_t addrlen = sizeof(st);
350 int new_fd;
351
352 while(1)
353 {
354 new_fd = accept(F->fd, (struct sockaddr *)&st, &addrlen);
355 rb_get_errno();
356 if(new_fd < 0)
357 {
358 rb_setselect(F, RB_SELECT_ACCEPT, rb_accept_tryaccept, NULL);
359 return;
360 }
361
362 rb_fd_hack(&new_fd);
363
364 new_F = rb_open(new_fd, RB_FD_SOCKET, "Incoming Connection");
365
366 if(new_F == NULL)
367 {
368 rb_lib_log
369 ("rb_accept: new_F == NULL on incoming connection. Closing new_fd == %d\n",
370 new_fd);
371 close(new_fd);
372 continue;
373 }
374
375 if(rb_unlikely(!rb_set_nb(new_F)))
376 {
377 rb_get_errno();
378 rb_lib_log("rb_accept: Couldn't set FD %d non blocking!", new_F->fd);
379 rb_close(new_F);
380 }
381
382 #ifdef RB_IPV6
383 mangle_mapped_sockaddr((struct sockaddr *)&st);
384 #endif
385
386 if(F->accept->precb != NULL)
387 {
388 if(!F->accept->precb(new_F, (struct sockaddr *)&st, addrlen, F->accept->data)) /* pre-callback decided to drop it */
389 continue;
390 }
391 #ifdef HAVE_SSL
392 if(F->type & RB_FD_SSL)
393 {
394 rb_ssl_accept_setup(F, new_F, (struct sockaddr *)&st, addrlen);
395 }
396 else
397 #endif /* HAVE_SSL */
398 {
399 F->accept->callback(new_F, RB_OK, (struct sockaddr *)&st, addrlen,
400 F->accept->data);
401 }
402 }
403
404 }
405
406 /* try to accept a TCP connection */
407 void
408 rb_accept_tcp(rb_fde_t *F, ACPRE * precb, ACCB * callback, void *data)
409 {
410 if(F == NULL)
411 return;
412 lrb_assert(callback);
413
414 F->accept = rb_malloc(sizeof(struct acceptdata));
415 F->accept->callback = callback;
416 F->accept->data = data;
417 F->accept->precb = precb;
418 rb_accept_tryaccept(F, NULL);
419 }
420
421 /*
422 * void rb_connect_tcp(rb_platform_fd_t fd, struct sockaddr *dest,
423 * struct sockaddr *clocal,
424 * CNCB *callback, void *data, int timeout)
425 * Input: An fd to connect with, a host and port to connect to,
426 * a local sockaddr to connect from (or NULL to use the
427 * default), a callback, the data to pass into the callback, the
428 * address family.
429 * Output: None.
430 * Side-effects: A non-blocking connection to the host is started, and
431 * if necessary, set up for selection. The callback given
432 * may be called now, or it may be called later.
433 */
434 void
435 rb_connect_tcp(rb_fde_t *F, struct sockaddr *dest,
436 struct sockaddr *clocal, CNCB * callback, void *data, int timeout)
437 {
438 if(F == NULL)
439 return;
440
441 lrb_assert(callback);
442 F->connect = rb_malloc(sizeof(struct conndata));
443 F->connect->callback = callback;
444 F->connect->data = data;
445
446 memcpy(&F->connect->hostaddr, dest, sizeof(F->connect->hostaddr));
447
448 /* Note that we're using a passed sockaddr here. This is because
449 * generally you'll be bind()ing to a sockaddr grabbed from
450 * getsockname(), so this makes things easier.
451 * XXX If NULL is passed as local, we should later on bind() to the
452 * virtual host IP, for completeness.
453 * -- adrian
454 */
455 if((clocal != NULL) && (bind(F->fd, clocal, GET_SS_LEN(clocal)) < 0))
456 {
457 /* Failure, call the callback with RB_ERR_BIND */
458 rb_connect_callback(F, RB_ERR_BIND);
459 /* ... and quit */
460 return;
461 }
462
463 /* We have a valid IP, so we just call tryconnect */
464 /* Make sure we actually set the timeout here .. */
465 rb_settimeout(F, timeout, rb_connect_timeout, NULL);
466 rb_connect_tryconnect(F, NULL);
467 }
468
469
470 /*
471 * rb_connect_callback() - call the callback, and continue with life
472 */
473 void
474 rb_connect_callback(rb_fde_t *F, int status)
475 {
476 CNCB *hdl;
477 void *data;
478 int errtmp = errno; /* save errno as rb_settimeout clobbers it sometimes */
479
480 /* This check is gross..but probably necessary */
481 if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
482 return;
483 /* Clear the connect flag + handler */
484 hdl = F->connect->callback;
485 data = F->connect->data;
486 F->connect->callback = NULL;
487
488
489 /* Clear the timeout handler */
490 rb_settimeout(F, 0, NULL, NULL);
491 errno = errtmp;
492 /* Call the handler */
493 hdl(F, status, data);
494 }
495
496
497 /*
498 * rb_connect_timeout() - this gets called when the socket connection
499 * times out. This *only* can be called once connect() is initially
500 * called ..
501 */
502 static void
503 rb_connect_timeout(rb_fde_t *F, void *notused)
504 {
505 /* error! */
506 rb_connect_callback(F, RB_ERR_TIMEOUT);
507 }
508
509 /* static void rb_connect_tryconnect(rb_platform_fd_t fd, void *notused)
510 * Input: The fd, the handler data(unused).
511 * Output: None.
512 * Side-effects: Try and connect with pending connect data for the FD. If
513 * we succeed or get a fatal error, call the callback.
514 * Otherwise, it is still blocking or something, so register
515 * to select for a write event on this FD.
516 */
517 static void
518 rb_connect_tryconnect(rb_fde_t *F, void *notused)
519 {
520 int retval;
521
522 if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
523 return;
524 /* Try the connect() */
525 retval = connect(F->fd,
526 (struct sockaddr *)&F->connect->hostaddr,
527 GET_SS_LEN(&F->connect->hostaddr));
528 /* Error? */
529 if(retval < 0)
530 {
531 /*
532 * If we get EISCONN, then we've already connect()ed the socket,
533 * which is a good thing.
534 * -- adrian
535 */
536 rb_get_errno();
537 if(errno == EISCONN)
538 rb_connect_callback(F, RB_OK);
539 else if(rb_ignore_errno(errno))
540 /* Ignore error? Reschedule */
541 rb_setselect(F, RB_SELECT_CONNECT, rb_connect_tryconnect, NULL);
542 else
543 /* Error? Fail with RB_ERR_CONNECT */
544 rb_connect_callback(F, RB_ERR_CONNECT);
545 return;
546 }
547 /* If we get here, we've suceeded, so call with RB_OK */
548 rb_connect_callback(F, RB_OK);
549 }
550
551
552 int
553 rb_connect_sockaddr(rb_fde_t *F, struct sockaddr *addr, int len)
554 {
555 if(F == NULL)
556 return 0;
557
558 memcpy(addr, &F->connect->hostaddr, len);
559 return 1;
560 }
561
562 /*
563 * rb_error_str() - return an error string for the given error condition
564 */
565 const char *
566 rb_errstr(int error)
567 {
568 if(error < 0 || error >= RB_ERR_MAX)
569 return "Invalid error number!";
570 return rb_err_str[error];
571 }
572
573
574 int
575 rb_socketpair(int family, int sock_type, int proto, rb_fde_t **F1, rb_fde_t **F2, const char *note)
576 {
577 rb_platform_fd_t nfd[2];
578 if(number_fd >= rb_maxconnections)
579 {
580 errno = ENFILE;
581 return -1;
582 }
583
584 #ifdef HAVE_SOCKETPAIR
585 if(socketpair(family, sock_type, proto, nfd))
586 #else
587 if(sock_type == SOCK_DGRAM)
588 {
589 return rb_inet_socketpair_udp(F1, F2);
590 }
591
592 if(rb_inet_socketpair(AF_INET, sock_type, proto, nfd))
593 #endif
594 return -1;
595
596 rb_fd_hack(&nfd[0]);
597 rb_fd_hack(&nfd[1]);
598
599 *F1 = rb_open(nfd[0], RB_FD_SOCKET, note);
600 *F2 = rb_open(nfd[1], RB_FD_SOCKET, note);
601
602 if(*F1 == NULL)
603 {
604 if(*F2 != NULL)
605 rb_close(*F2);
606 return -1;
607 }
608
609 if(*F2 == NULL)
610 {
611 rb_close(*F1);
612 return -1;
613 }
614
615 /* Set the socket non-blocking, and other wonderful bits */
616 if(rb_unlikely(!rb_set_nb(*F1)))
617 {
618 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[0], strerror(errno));
619 rb_close(*F1);
620 rb_close(*F2);
621 return -1;
622 }
623
624 if(rb_unlikely(!rb_set_nb(*F2)))
625 {
626 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[1], strerror(errno));
627 rb_close(*F1);
628 rb_close(*F2);
629 return -1;
630 }
631
632 return 0;
633 }
634
635
636 int
637 rb_pipe(rb_fde_t **F1, rb_fde_t **F2, const char *desc)
638 {
639 #ifndef _WIN32
640 rb_platform_fd_t fd[2];
641 if(number_fd >= rb_maxconnections)
642 {
643 errno = ENFILE;
644 return -1;
645 }
646 if(pipe(fd) == -1)
647 return -1;
648 rb_fd_hack(&fd[0]);
649 rb_fd_hack(&fd[1]);
650 *F1 = rb_open(fd[0], RB_FD_PIPE, desc);
651 *F2 = rb_open(fd[1], RB_FD_PIPE, desc);
652
653 if(rb_unlikely(!rb_set_nb(*F1)))
654 {
655 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[0], strerror(errno));
656 rb_close(*F1);
657 rb_close(*F2);
658 return -1;
659 }
660
661 if(rb_unlikely(!rb_set_nb(*F2)))
662 {
663 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[1], strerror(errno));
664 rb_close(*F1);
665 rb_close(*F2);
666 return -1;
667 }
668
669
670 return 0;
671 #else
672 /* Its not a pipe..but its selectable. I'll take dirty hacks
673 * for $500 Alex.
674 */
675 return rb_socketpair(AF_INET, SOCK_STREAM, 0, F1, F2, desc);
676 #endif
677 }
678
679 /*
680 * rb_socket() - open a socket
681 *
682 * This is a highly highly cut down version of squid's rb_open() which
683 * for the most part emulates socket(), *EXCEPT* it fails if we're about
684 * to run out of file descriptors.
685 */
686 rb_fde_t *
687 rb_socket(int family, int sock_type, int proto, const char *note)
688 {
689 rb_fde_t *F;
690 rb_platform_fd_t fd;
691 /* First, make sure we aren't going to run out of file descriptors */
692 if(rb_unlikely(number_fd >= rb_maxconnections))
693 {
694 errno = ENFILE;
695 return NULL;
696 }
697
698 /*
699 * Next, we try to open the socket. We *should* drop the reserved FD
700 * limit if/when we get an error, but we can deal with that later.
701 * XXX !!! -- adrian
702 */
703 fd = socket(family, sock_type, proto);
704 rb_fd_hack(&fd);
705 if(rb_unlikely(fd < 0))
706 return NULL; /* errno will be passed through, yay.. */
707
708 #if defined(RB_IPV6) && defined(IPV6_V6ONLY)
709 /*
710 * Make sure we can take both IPv4 and IPv6 connections
711 * on an AF_INET6 socket
712 */
713 if(family == AF_INET6)
714 {
715 int off = 1;
716 if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (void *) &off, sizeof(off)) == -1)
717 {
718 rb_lib_log("rb_socket: Could not set IPV6_V6ONLY option to 1 on FD %d: %s",
719 fd, strerror(errno));
720 close(fd);
721 return NULL;
722 }
723 }
724 #endif
725
726 F = rb_open(fd, RB_FD_SOCKET, note);
727 if(F == NULL)
728 {
729 rb_lib_log("rb_socket: rb_open returns NULL on FD %d: %s, closing fd", fd,
730 strerror(errno));
731 close(fd);
732 return NULL;
733 }
734 /* Set the socket non-blocking, and other wonderful bits */
735 if(rb_unlikely(!rb_set_nb(F)))
736 {
737 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd, strerror(errno));
738 rb_close(F);
739 return NULL;
740 }
741
742 return F;
743 }
744
745 /*
746 * If a sockaddr_storage is AF_INET6 but is a mapped IPv4
747 * socket manged the sockaddr.
748 */
749 #ifdef RB_IPV6
750 static void
751 mangle_mapped_sockaddr(struct sockaddr *in)
752 {
753 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)in;
754
755 if(in->sa_family == AF_INET)
756 return;
757
758 if(in->sa_family == AF_INET6 && IN6_IS_ADDR_V4MAPPED(&in6->sin6_addr))
759 {
760 struct sockaddr_in in4;
761 memset(&in4, 0, sizeof(struct sockaddr_in));
762 in4.sin_family = AF_INET;
763 in4.sin_port = in6->sin6_port;
764 in4.sin_addr.s_addr = ((uint32_t *)&in6->sin6_addr)[3];
765 memcpy(in, &in4, sizeof(struct sockaddr_in));
766 }
767 return;
768 }
769 #endif
770
771 /*
772 * rb_listen() - listen on a port
773 */
774 int
775 rb_listen(rb_fde_t *F, int backlog, int defer_accept)
776 {
777 int result;
778
779 F->type = RB_FD_SOCKET | RB_FD_LISTEN;
780 result = listen(F->fd, backlog);
781
782 #ifdef TCP_DEFER_ACCEPT
783 if (defer_accept && !result)
784 {
785 (void)setsockopt(F->fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &backlog, sizeof(int));
786 }
787 #endif
788 #ifdef SO_ACCEPTFILTER
789 if (defer_accept && !result)
790 {
791 struct accept_filter_arg afa;
792
793 memset(&afa, '\0', sizeof afa);
794 rb_strlcpy(afa.af_name, "dataready", sizeof afa.af_name);
795 (void)setsockopt(F->fd, SOL_SOCKET, SO_ACCEPTFILTER, &afa,
796 sizeof afa);
797 }
798 #endif
799
800 return result;
801 }
802
803 void
804 rb_fdlist_init(int closeall, int maxfds, size_t heapsize)
805 {
806 static int initialized = 0;
807 #ifdef _WIN32
808 WSADATA wsaData;
809 int err;
810 int vers = MAKEWORD(2, 0);
811
812 err = WSAStartup(vers, &wsaData);
813 if(err != 0)
814 {
815 rb_lib_die("WSAStartup failed");
816 }
817
818 #endif
819 if(!initialized)
820 {
821 rb_maxconnections = maxfds;
822 if(closeall)
823 rb_close_all();
824 /* Since we're doing this once .. */
825 initialized = 1;
826 }
827 fd_heap = rb_bh_create(sizeof(rb_fde_t), heapsize, "librb_fd_heap");
828
829 }
830
831
832 /* Called to open a given filedescriptor */
833 rb_fde_t *
834 rb_open(rb_platform_fd_t fd, uint8_t type, const char *desc)
835 {
836 rb_fde_t *F;
837 lrb_assert(fd >= 0);
838
839 F = add_fd(fd);
840
841 lrb_assert(!IsFDOpen(F));
842 if(rb_unlikely(IsFDOpen(F)))
843 {
844 const char *fdesc;
845 if(F != NULL && F->desc != NULL)
846 fdesc = F->desc;
847 else
848 fdesc = "NULL";
849 rb_lib_log("Trying to rb_open an already open FD: %d desc: %s", fd, fdesc);
850 return NULL;
851 }
852 F->fd = fd;
853 F->type = type;
854 SetFDOpen(F);
855
856 if(desc != NULL)
857 F->desc = rb_strndup(desc, FD_DESC_SZ);
858 number_fd++;
859 return F;
860 }
861
862
863 /* Called to close a given filedescriptor */
864 void
865 rb_close(rb_fde_t *F)
866 {
867 int type, fd;
868
869 if(F == NULL)
870 return;
871
872 fd = F->fd;
873 type = F->type;
874 lrb_assert(IsFDOpen(F));
875
876 lrb_assert(!(type & RB_FD_FILE));
877 if(rb_unlikely(type & RB_FD_FILE))
878 {
879 lrb_assert(F->read_handler == NULL);
880 lrb_assert(F->write_handler == NULL);
881 }
882 rb_setselect(F, RB_SELECT_WRITE | RB_SELECT_READ, NULL, NULL);
883 rb_settimeout(F, 0, NULL, NULL);
884 rb_free(F->accept);
885 rb_free(F->connect);
886 rb_free(F->desc);
887 #ifdef HAVE_SSL
888 if(type & RB_FD_SSL)
889 {
890 rb_ssl_shutdown(F);
891 }
892 #endif /* HAVE_SSL */
893 if(IsFDOpen(F))
894 {
895 remove_fd(F);
896 ClearFDOpen(F);
897 }
898
899 if(type & RB_FD_LISTEN)
900 shutdown(fd, SHUT_RDWR);
901 }
902
903
904 /*
905 * rb_dump_fd() - dump the list of active filedescriptors
906 */
907 void
908 rb_dump_fd(DUMPCB * cb, void *data)
909 {
910 static const char *empty = "";
911 rb_dlink_node *ptr;
912 rb_dlink_list *bucket;
913 rb_fde_t *F;
914 unsigned int i;
915
916 for(i = 0; i < RB_FD_HASH_SIZE; i++)
917 {
918 bucket = &rb_fd_table[i];
919
920 if(rb_dlink_list_length(bucket) <= 0)
921 continue;
922
923 RB_DLINK_FOREACH(ptr, bucket->head)
924 {
925 F = ptr->data;
926 if(F == NULL || !IsFDOpen(F))
927 continue;
928
929 cb(F->fd, F->desc ? F->desc : empty, data);
930 }
931 }
932 }
933
934 /*
935 * rb_note() - set the fd note
936 *
937 * Note: must be careful not to overflow rb_fd_table[fd].desc when
938 * calling.
939 */
940 void
941 rb_note(rb_fde_t *F, const char *string)
942 {
943 if(F == NULL)
944 return;
945
946 rb_free(F->desc);
947 F->desc = rb_strndup(string, FD_DESC_SZ);
948 }
949
950 void
951 rb_set_type(rb_fde_t *F, uint8_t type)
952 {
953 /* if the caller is calling this, lets assume they have a clue */
954 F->type = type;
955 return;
956 }
957
958 uint8_t
959 rb_get_type(rb_fde_t *F)
960 {
961 return F->type;
962 }
963
964 int
965 rb_fd_ssl(rb_fde_t *F)
966 {
967 if(F == NULL)
968 return 0;
969 if(F->type & RB_FD_SSL)
970 return 1;
971 return 0;
972 }
973
974 rb_platform_fd_t
975 rb_get_fd(rb_fde_t *F)
976 {
977 if(F == NULL)
978 return -1;
979 return (F->fd);
980 }
981
982 rb_fde_t *
983 rb_get_fde(rb_platform_fd_t fd)
984 {
985 return rb_find_fd(fd);
986 }
987
988 ssize_t
989 rb_read(rb_fde_t *F, void *buf, int count)
990 {
991 ssize_t ret;
992 if(F == NULL)
993 return 0;
994
995 /* This needs to be *before* RB_FD_SOCKET otherwise you'll process
996 * an SSL socket as a regular socket
997 */
998 #ifdef HAVE_SSL
999 if(F->type & RB_FD_SSL)
1000 {
1001 return rb_ssl_read(F, buf, count);
1002 }
1003 #endif
1004 if(F->type & RB_FD_SOCKET)
1005 {
1006 ret = recv(F->fd, buf, count, 0);
1007 if(ret < 0)
1008 {
1009 rb_get_errno();
1010 }
1011 return ret;
1012 }
1013
1014
1015 /* default case */
1016 return read(F->fd, buf, count);
1017 }
1018
1019
1020 ssize_t
1021 rb_write(rb_fde_t *F, const void *buf, int count)
1022 {
1023 ssize_t ret;
1024 if(F == NULL)
1025 return 0;
1026
1027 #ifdef HAVE_SSL
1028 if(F->type & RB_FD_SSL)
1029 {
1030 return rb_ssl_write(F, buf, count);
1031 }
1032 #endif
1033 if(F->type & RB_FD_SOCKET)
1034 {
1035 ret = send(F->fd, buf, count, MSG_NOSIGNAL);
1036 if(ret < 0)
1037 {
1038 rb_get_errno();
1039 }
1040 return ret;
1041 }
1042
1043 return write(F->fd, buf, count);
1044 }
1045
1046 #if defined(HAVE_SSL) || defined(WIN32) || !defined(HAVE_WRITEV)
1047 static ssize_t
1048 rb_fake_writev(rb_fde_t *F, const struct rb_iovec *vp, size_t vpcount)
1049 {
1050 ssize_t count = 0;
1051
1052 while(vpcount-- > 0)
1053 {
1054 ssize_t written = rb_write(F, vp->iov_base, vp->iov_len);
1055
1056 if(written <= 0)
1057 {
1058 if(count > 0)
1059 return count;
1060 else
1061 return written;
1062 }
1063 count += written;
1064 vp++;
1065 }
1066 return (count);
1067 }
1068 #endif
1069
1070 #if defined(WIN32) || !defined(HAVE_WRITEV)
1071 ssize_t
1072 rb_writev(rb_fde_t *F, struct rb_iovec * vecount, int count)
1073 {
1074 return rb_fake_writev(F, vecount, count);
1075 }
1076
1077 #else
1078 ssize_t
1079 rb_writev(rb_fde_t *F, struct rb_iovec * vector, int count)
1080 {
1081 if(F == NULL)
1082 {
1083 errno = EBADF;
1084 return -1;
1085 }
1086 #ifdef HAVE_SSL
1087 if(F->type & RB_FD_SSL)
1088 {
1089 return rb_fake_writev(F, vector, count);
1090 }
1091 #endif /* HAVE_SSL */
1092 #ifdef HAVE_SENDMSG
1093 if(F->type & RB_FD_SOCKET)
1094 {
1095 struct msghdr msg;
1096 memset(&msg, 0, sizeof(msg));
1097 msg.msg_iov = (struct iovec *)vector;
1098 msg.msg_iovlen = count;
1099 return sendmsg(F->fd, &msg, MSG_NOSIGNAL);
1100 }
1101 #endif /* HAVE_SENDMSG */
1102 return writev(F->fd, (struct iovec *)vector, count);
1103
1104 }
1105 #endif
1106
1107
1108 /*
1109 * From: Thomas Helvey <tomh@inxpress.net>
1110 */
1111 static const char *IpQuadTab[] = {
1112 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
1113 "10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
1114 "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
1115 "30", "31", "32", "33", "34", "35", "36", "37", "38", "39",
1116 "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
1117 "50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
1118 "60", "61", "62", "63", "64", "65", "66", "67", "68", "69",
1119 "70", "71", "72", "73", "74", "75", "76", "77", "78", "79",
1120 "80", "81", "82", "83", "84", "85", "86", "87", "88", "89",
1121 "90", "91", "92", "93", "94", "95", "96", "97", "98", "99",
1122 "100", "101", "102", "103", "104", "105", "106", "107", "108", "109",
1123 "110", "111", "112", "113", "114", "115", "116", "117", "118", "119",
1124 "120", "121", "122", "123", "124", "125", "126", "127", "128", "129",
1125 "130", "131", "132", "133", "134", "135", "136", "137", "138", "139",
1126 "140", "141", "142", "143", "144", "145", "146", "147", "148", "149",
1127 "150", "151", "152", "153", "154", "155", "156", "157", "158", "159",
1128 "160", "161", "162", "163", "164", "165", "166", "167", "168", "169",
1129 "170", "171", "172", "173", "174", "175", "176", "177", "178", "179",
1130 "180", "181", "182", "183", "184", "185", "186", "187", "188", "189",
1131 "190", "191", "192", "193", "194", "195", "196", "197", "198", "199",
1132 "200", "201", "202", "203", "204", "205", "206", "207", "208", "209",
1133 "210", "211", "212", "213", "214", "215", "216", "217", "218", "219",
1134 "220", "221", "222", "223", "224", "225", "226", "227", "228", "229",
1135 "230", "231", "232", "233", "234", "235", "236", "237", "238", "239",
1136 "240", "241", "242", "243", "244", "245", "246", "247", "248", "249",
1137 "250", "251", "252", "253", "254", "255"
1138 };
1139
1140 /*
1141 * inetntoa - in_addr to string
1142 * changed name to remove collision possibility and
1143 * so behaviour is guaranteed to take a pointer arg.
1144 * -avalon 23/11/92
1145 * inet_ntoa -- returned the dotted notation of a given
1146 * internet number
1147 * argv 11/90).
1148 * inet_ntoa -- its broken on some Ultrix/Dynix too. -avalon
1149 */
1150
1151 static const char *
1152 inetntoa(const char *in)
1153 {
1154 static char buf[16];
1155 char *bufptr = buf;
1156 const unsigned char *a = (const unsigned char *)in;
1157 const char *n;
1158
1159 n = IpQuadTab[*a++];
1160 while(*n)
1161 *bufptr++ = *n++;
1162 *bufptr++ = '.';
1163 n = IpQuadTab[*a++];
1164 while(*n)
1165 *bufptr++ = *n++;
1166 *bufptr++ = '.';
1167 n = IpQuadTab[*a++];
1168 while(*n)
1169 *bufptr++ = *n++;
1170 *bufptr++ = '.';
1171 n = IpQuadTab[*a];
1172 while(*n)
1173 *bufptr++ = *n++;
1174 *bufptr = '\0';
1175 return buf;
1176 }
1177
1178 /*
1179 * WARNING: Don't even consider trying to compile this on a system where
1180 * sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
1181 */
1182
1183 static const char *inet_ntop4(const unsigned char *src, char *dst, unsigned int size);
1184 #ifdef RB_IPV6
1185 static const char *inet_ntop6(const unsigned char *src, char *dst, unsigned int size);
1186 #endif
1187
1188 /* const char *
1189 * inet_ntop4(src, dst, size)
1190 * format an IPv4 address
1191 * return:
1192 * `dst' (as a const)
1193 * notes:
1194 * (1) uses no statics
1195 * (2) takes a unsigned char* not an in_addr as input
1196 * author:
1197 * Paul Vixie, 1996.
1198 */
1199 static const char *
1200 inet_ntop4(const unsigned char *src, char *dst, unsigned int size)
1201 {
1202 if(size < 16)
1203 return NULL;
1204 return strcpy(dst, inetntoa((const char *)src));
1205 }
1206
1207 /* const char *
1208 * inet_ntop6(src, dst, size)
1209 * convert IPv6 binary address into presentation (printable) format
1210 * author:
1211 * Paul Vixie, 1996.
1212 */
1213 #ifdef RB_IPV6
1214 static const char *
1215 inet_ntop6(const unsigned char *src, char *dst, unsigned int size)
1216 {
1217 /*
1218 * Note that int32_t and int16_t need only be "at least" large enough
1219 * to contain a value of the specified size. On some systems, like
1220 * Crays, there is no such thing as an integer variable with 16 bits.
1221 * Keep this in mind if you think this function should have been coded
1222 * to use pointer overlays. All the world's not a VAX.
1223 */
1224 char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"], *tp;
1225 struct
1226 {
1227 int base, len;
1228 }
1229 best, cur;
1230 unsigned int words[IN6ADDRSZ / INT16SZ];
1231 int i;
1232
1233 /*
1234 * Preprocess:
1235 * Copy the input (bytewise) array into a wordwise array.
1236 * Find the longest run of 0x00's in src[] for :: shorthanding.
1237 */
1238 memset(words, '\0', sizeof words);
1239 for(i = 0; i < IN6ADDRSZ; i += 2)
1240 words[i / 2] = (src[i] << 8) | src[i + 1];
1241 best.base = -1;
1242 best.len = 0;
1243 cur.base = -1;
1244 cur.len = 0;
1245 for(i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
1246 {
1247 if(words[i] == 0)
1248 {
1249 if(cur.base == -1)
1250 cur.base = i, cur.len = 1;
1251 else
1252 cur.len++;
1253 }
1254 else
1255 {
1256 if(cur.base != -1)
1257 {
1258 if(best.base == -1 || cur.len > best.len)
1259 best = cur;
1260 cur.base = -1;
1261 }
1262 }
1263 }
1264 if(cur.base != -1)
1265 {
1266 if(best.base == -1 || cur.len > best.len)
1267 best = cur;
1268 }
1269 if(best.base != -1 && best.len < 2)
1270 best.base = -1;
1271
1272 /*
1273 * Format the result.
1274 */
1275 tp = tmp;
1276 for(i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
1277 {
1278 /* Are we inside the best run of 0x00's? */
1279 if(best.base != -1 && i >= best.base && i < (best.base + best.len))
1280 {
1281 if(i == best.base)
1282 {
1283 if(i == 0)
1284 *tp++ = '0';
1285 *tp++ = ':';
1286 }
1287 continue;
1288 }
1289 /* Are we following an initial run of 0x00s or any real hex? */
1290 if(i != 0)
1291 *tp++ = ':';
1292 /* Is this address an encapsulated IPv4? */
1293 if(i == 6 && best.base == 0 &&
1294 (best.len == 6 || (best.len == 5 && words[5] == 0xffff)))
1295 {
1296 if(!inet_ntop4(src + 12, tp, sizeof tmp - (tp - tmp)))
1297 return (NULL);
1298 tp += strlen(tp);
1299 break;
1300 }
1301 tp += sprintf(tp, "%x", words[i]);
1302 }
1303 /* Was it a trailing run of 0x00's? */
1304 if(best.base != -1 && (best.base + best.len) == (IN6ADDRSZ / INT16SZ))
1305 *tp++ = ':';
1306 *tp++ = '\0';
1307
1308 /*
1309 * Check for overflow, copy, and we're done.
1310 */
1311
1312 if((unsigned int)(tp - tmp) > size)
1313 {
1314 return (NULL);
1315 }
1316 return memcpy(dst, tmp, tp - tmp);
1317 }
1318 #endif
1319
1320 int
1321 rb_inet_pton_sock(const char *src, struct sockaddr *dst)
1322 {
1323 if(rb_inet_pton(AF_INET, src, &((struct sockaddr_in *)dst)->sin_addr))
1324 {
1325 SET_SS_FAMILY(dst, AF_INET);
1326 SET_SS_LEN(dst, sizeof(struct sockaddr_in));
1327 return 1;
1328 }
1329 #ifdef RB_IPV6
1330 else if(rb_inet_pton(AF_INET6, src, &((struct sockaddr_in6 *)dst)->sin6_addr))
1331 {
1332 SET_SS_FAMILY(dst, AF_INET6);
1333 SET_SS_LEN(dst, sizeof(struct sockaddr_in6));
1334 return 1;
1335 }
1336 #endif
1337 SET_SS_PORT(dst, 0);
1338 return 0;
1339 }
1340
1341 const char *
1342 rb_inet_ntop_sock(struct sockaddr *src, char *dst, unsigned int size)
1343 {
1344 switch (src->sa_family)
1345 {
1346 case AF_INET:
1347 return (rb_inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, dst, size));
1348 #ifdef RB_IPV6
1349 case AF_INET6:
1350 return (rb_inet_ntop
1351 (AF_INET6, &((struct sockaddr_in6 *)src)->sin6_addr, dst, size));
1352 #endif
1353 default:
1354 return NULL;
1355 }
1356 }
1357
1358 /* char *
1359 * rb_inet_ntop(af, src, dst, size)
1360 * convert a network format address to presentation format.
1361 * return:
1362 * pointer to presentation format address (`dst'), or NULL (see errno).
1363 * author:
1364 * Paul Vixie, 1996.
1365 */
1366 const char *
1367 rb_inet_ntop(int af, const void *src, char *dst, unsigned int size)
1368 {
1369 switch (af)
1370 {
1371 case AF_INET:
1372 return (inet_ntop4(src, dst, size));
1373 #ifdef RB_IPV6
1374 case AF_INET6:
1375 if(IN6_IS_ADDR_V4MAPPED((const struct in6_addr *)src) ||
1376 IN6_IS_ADDR_V4COMPAT((const struct in6_addr *)src))
1377 return (inet_ntop4
1378 ((const unsigned char *)&((const struct in6_addr *)src)->
1379 s6_addr[12], dst, size));
1380 else
1381 return (inet_ntop6(src, dst, size));
1382
1383
1384 #endif
1385 default:
1386 return (NULL);
1387 }
1388 /* NOTREACHED */
1389 }
1390
1391 /*
1392 * WARNING: Don't even consider trying to compile this on a system where
1393 * sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
1394 */
1395
1396 /* int
1397 * rb_inet_pton(af, src, dst)
1398 * convert from presentation format (which usually means ASCII printable)
1399 * to network format (which is usually some kind of binary format).
1400 * return:
1401 * 1 if the address was valid for the specified address family
1402 * 0 if the address wasn't valid (`dst' is untouched in this case)
1403 * -1 if some other error occurred (`dst' is untouched in this case, too)
1404 * author:
1405 * Paul Vixie, 1996.
1406 */
1407
1408 /* int
1409 * inet_pton4(src, dst)
1410 * like inet_aton() but without all the hexadecimal and shorthand.
1411 * return:
1412 * 1 if `src' is a valid dotted quad, else 0.
1413 * notice:
1414 * does not touch `dst' unless it's returning 1.
1415 * author:
1416 * Paul Vixie, 1996.
1417 */
1418 static int
1419 inet_pton4(const char *src, unsigned char *dst)
1420 {
1421 int saw_digit, octets, ch;
1422 unsigned char tmp[INADDRSZ], *tp;
1423
1424 saw_digit = 0;
1425 octets = 0;
1426 *(tp = tmp) = 0;
1427 while((ch = *src++) != '\0')
1428 {
1429
1430 if(ch >= '0' && ch <= '9')
1431 {
1432 unsigned int new = *tp * 10 + (ch - '0');
1433
1434 if(new > 255)
1435 return (0);
1436 *tp = new;
1437 if(!saw_digit)
1438 {
1439 if(++octets > 4)
1440 return (0);
1441 saw_digit = 1;
1442 }
1443 }
1444 else if(ch == '.' && saw_digit)
1445 {
1446 if(octets == 4)
1447 return (0);
1448 *++tp = 0;
1449 saw_digit = 0;
1450 }
1451 else
1452 return (0);
1453 }
1454 if(octets < 4)
1455 return (0);
1456 memcpy(dst, tmp, INADDRSZ);
1457 return (1);
1458 }
1459
1460 #ifdef RB_IPV6
1461 /* int
1462 * inet_pton6(src, dst)
1463 * convert presentation level address to network order binary form.
1464 * return:
1465 * 1 if `src' is a valid [RFC1884 2.2] address, else 0.
1466 * notice:
1467 * (1) does not touch `dst' unless it's returning 1.
1468 * (2) :: in a full address is silently ignored.
1469 * credit:
1470 * inspired by Mark Andrews.
1471 * author:
1472 * Paul Vixie, 1996.
1473 */
1474
1475 static int
1476 inet_pton6(const char *src, unsigned char *dst)
1477 {
1478 static const char xdigits[] = "0123456789abcdef";
1479 unsigned char tmp[IN6ADDRSZ], *tp, *endp, *colonp;
1480 const char *curtok;
1481 int ch, saw_xdigit;
1482 unsigned int val;
1483
1484 tp = memset(tmp, '\0', IN6ADDRSZ);
1485 endp = tp + IN6ADDRSZ;
1486 colonp = NULL;
1487 /* Leading :: requires some special handling. */
1488 if(*src == ':')
1489 if(*++src != ':')
1490 return (0);
1491 curtok = src;
1492 saw_xdigit = 0;
1493 val = 0;
1494 while((ch = tolower((unsigned char)*src++)) != '\0')
1495 {
1496 const char *pch;
1497
1498 pch = strchr(xdigits, ch);
1499 if(pch != NULL)
1500 {
1501 val <<= 4;
1502 val |= (pch - xdigits);
1503 if(val > 0xffff)
1504 return (0);
1505 saw_xdigit = 1;
1506 continue;
1507 }
1508 if(ch == ':')
1509 {
1510 curtok = src;
1511 if(!saw_xdigit)
1512 {
1513 if(colonp)
1514 return (0);
1515 colonp = tp;
1516 continue;
1517 }
1518 else if(*src == '\0')
1519 {
1520 return (0);
1521 }
1522 if(tp + INT16SZ > endp)
1523 return (0);
1524 *tp++ = (unsigned char)(val >> 8) & 0xff;
1525 *tp++ = (unsigned char)val & 0xff;
1526 saw_xdigit = 0;
1527 val = 0;
1528 continue;
1529 }
1530 if(*src != '\0' && ch == '.')
1531 {
1532 if(((tp + INADDRSZ) <= endp) && inet_pton4(curtok, tp) > 0)
1533 {
1534 tp += INADDRSZ;
1535 saw_xdigit = 0;
1536 break; /* '\0' was seen by inet_pton4(). */
1537 }
1538 }
1539 else
1540 continue;
1541 return (0);
1542 }
1543 if(saw_xdigit)
1544 {
1545 if(tp + INT16SZ > endp)
1546 return (0);
1547 *tp++ = (unsigned char)(val >> 8) & 0xff;
1548 *tp++ = (unsigned char)val & 0xff;
1549 }
1550 if(colonp != NULL)
1551 {
1552 /*
1553 * Since some memmove()'s erroneously fail to handle
1554 * overlapping regions, we'll do the shift by hand.
1555 */
1556 const int n = tp - colonp;
1557 int i;
1558
1559 if(tp == endp)
1560 return (0);
1561 for(i = 1; i <= n; i++)
1562 {
1563 endp[-i] = colonp[n - i];
1564 colonp[n - i] = 0;
1565 }
1566 tp = endp;
1567 }
1568 if(tp != endp)
1569 return (0);
1570 memcpy(dst, tmp, IN6ADDRSZ);
1571 return (1);
1572 }
1573 #endif
1574 int
1575 rb_inet_pton(int af, const char *src, void *dst)
1576 {
1577 switch (af)
1578 {
1579 case AF_INET:
1580 return (inet_pton4(src, dst));
1581 #ifdef RB_IPV6
1582 case AF_INET6:
1583 /* Somebody might have passed as an IPv4 address this is sick but it works */
1584 if(inet_pton4(src, dst))
1585 {
1586 char tmp[HOSTIPLEN];
1587 sprintf(tmp, "::ffff:%s", src);
1588 return (inet_pton6(tmp, dst));
1589 }
1590 else
1591 return (inet_pton6(src, dst));
1592 #endif
1593 default:
1594 return (-1);
1595 }
1596 /* NOTREACHED */
1597 }
1598
1599
1600 #ifndef HAVE_SOCKETPAIR
1601
1602 /* mostly based on perl's emulation of socketpair udp */
1603 static int
1604 rb_inet_socketpair_udp(rb_fde_t **newF1, rb_fde_t **newF2)
1605 {
1606 struct sockaddr_in addr[2];
1607 rb_socklen_t size = sizeof(struct sockaddr_in);
1608 rb_fde_t *F[2];
1609 rb_platform_fd_t fd[2];
1610 int i, got;
1611 unsigned short port;
1612 struct timeval wait = { 0, 100000 };
1613 int max;
1614 fd_set rset;
1615 struct sockaddr_in readfrom;
1616 unsigned short buf[2];
1617 int o_errno;
1618
1619 memset(&addr, 0, sizeof(addr));
1620
1621 for(i = 0; i < 2; i++)
1622 {
1623 F[i] = rb_socket(AF_INET, SOCK_DGRAM, 0, "udp socketpair");
1624 if(F[i] == NULL)
1625 goto failed;
1626 addr[i].sin_family = AF_INET;
1627 addr[i].sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1628 addr[i].sin_port = 0;
1629 if(bind(rb_get_fd(F[i]), (struct sockaddr *)&addr[i], sizeof(struct sockaddr_in)))
1630 goto failed;
1631 fd[i] = rb_get_fd(F[i]);
1632 }
1633
1634 for(i = 0; i < 2; i++)
1635 {
1636 if(getsockname(fd[i], (struct sockaddr *)&addr[i], &size))
1637 goto failed;
1638 if(size != sizeof(struct sockaddr_in))
1639 goto failed;
1640 if(connect(fd[!i], (struct sockaddr *)&addr[i], sizeof(struct sockaddr_in)) == -1)
1641 goto failed;
1642 }
1643
1644 for(i = 0; i < 2; i++)
1645 {
1646 port = addr[i].sin_port;
1647 got = rb_write(F[i], &port, sizeof(port));
1648 if(got != sizeof(port))
1649 {
1650 if(got == -1)
1651 goto failed;
1652 goto abort_failed;
1653 }
1654 }
1655
1656 max = fd[1] > fd[0] ? fd[1] : fd[0];
1657 FD_ZERO(&rset);
1658 FD_SET(fd[0], &rset);
1659 FD_SET(fd[1], &rset);
1660 got = select(max + 1, &rset, NULL, NULL, &wait);
1661 if(got != 2 || !FD_ISSET(fd[0], &rset) || !FD_ISSET(fd[1], &rset))
1662 {
1663 if(got == -1)
1664 goto failed;
1665 goto abort_failed;
1666 }
1667
1668 for(i = 0; i < 2; i++)
1669 {
1670 #ifdef MSG_DONTWAIT
1671 int flag = MSG_DONTWAIT
1672 #else
1673 int flag = 0;
1674 #endif
1675 got = recvfrom(rb_get_fd(F[i]), (char *)&buf, sizeof(buf), flag,
1676 (struct sockaddr *)&readfrom, &size);
1677 if(got == -1)
1678 goto failed;
1679 if(got != sizeof(port)
1680 || size != sizeof(struct sockaddr_in)
1681 || buf[0] != (unsigned short)addr[!i].sin_port
1682 || readfrom.sin_family != addr[!i].sin_family
1683 || readfrom.sin_addr.s_addr != addr[!i].sin_addr.s_addr
1684 || readfrom.sin_port != addr[!i].sin_port)
1685 goto abort_failed;
1686 }
1687
1688 *newF1 = F[0];
1689 *newF2 = F[1];
1690 return 0;
1691
1692 #ifdef _WIN32
1693 #ifndef ECONNABORTED
1694 #define ECONNABORTED WSAECONNABORTED
1695 #endif
1696 #endif
1697
1698 abort_failed:
1699 rb_get_errno();
1700 errno = ECONNABORTED;
1701 failed:
1702 if(errno != ECONNABORTED)
1703 rb_get_errno();
1704 o_errno = errno;
1705 if(F[0] != NULL)
1706 rb_close(F[0]);
1707 if(F[1] != NULL)
1708 rb_close(F[1]);
1709 errno = o_errno;
1710 return -1;
1711 }
1712
1713
1714 int
1715 rb_inet_socketpair(int family, int type, int protocol, rb_platform_fd_t fd[2])
1716 {
1717 int listener = -1;
1718 int connector = -1;
1719 int acceptor = -1;
1720 struct sockaddr_in listen_addr;
1721 struct sockaddr_in connect_addr;
1722 rb_socklen_t size;
1723
1724 if(protocol || family != AF_INET)
1725 {
1726 errno = EAFNOSUPPORT;
1727 return -1;
1728 }
1729 if(!fd)
1730 {
1731 errno = EINVAL;
1732 return -1;
1733 }
1734
1735 listener = socket(AF_INET, type, 0);
1736 if(listener == -1)
1737 return -1;
1738 memset(&listen_addr, 0, sizeof(listen_addr));
1739 listen_addr.sin_family = AF_INET;
1740 listen_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1741 listen_addr.sin_port = 0; /* kernel choses port. */
1742 if(bind(listener, (struct sockaddr *)&listen_addr, sizeof(listen_addr)) == -1)
1743 goto tidy_up_and_fail;
1744 if(listen(listener, 1) == -1)
1745 goto tidy_up_and_fail;
1746
1747 connector = socket(AF_INET, type, 0);
1748 if(connector == -1)
1749 goto tidy_up_and_fail;
1750 /* We want to find out the port number to connect to. */
1751 size = sizeof(connect_addr);
1752 if(getsockname(listener, (struct sockaddr *)&connect_addr, &size) == -1)
1753 goto tidy_up_and_fail;
1754 if(size != sizeof(connect_addr))
1755 goto abort_tidy_up_and_fail;
1756 if(connect(connector, (struct sockaddr *)&connect_addr, sizeof(connect_addr)) == -1)
1757 goto tidy_up_and_fail;
1758
1759 size = sizeof(listen_addr);
1760 acceptor = accept(listener, (struct sockaddr *)&listen_addr, &size);
1761 if(acceptor == -1)
1762 goto tidy_up_and_fail;
1763 if(size != sizeof(listen_addr))
1764 goto abort_tidy_up_and_fail;
1765 close(listener);
1766 /* Now check we are talking to ourself by matching port and host on the
1767 two sockets. */
1768 if(getsockname(connector, (struct sockaddr *)&connect_addr, &size) == -1)
1769 goto tidy_up_and_fail;
1770 if(size != sizeof(connect_addr)
1771 || listen_addr.sin_family != connect_addr.sin_family
1772 || listen_addr.sin_addr.s_addr != connect_addr.sin_addr.s_addr
1773 || listen_addr.sin_port != connect_addr.sin_port)
1774 {
1775 goto abort_tidy_up_and_fail;
1776 }
1777 fd[0] = connector;
1778 fd[1] = acceptor;
1779 return 0;
1780
1781 abort_tidy_up_and_fail:
1782 errno = EINVAL; /* I hope this is portable and appropriate. */
1783
1784 tidy_up_and_fail:
1785 {
1786 int save_errno = errno;
1787 if(listener != -1)
1788 close(listener);
1789 if(connector != -1)
1790 close(connector);
1791 if(acceptor != -1)
1792 close(acceptor);
1793 errno = save_errno;
1794 return -1;
1795 }
1796 }
1797
1798 #endif
1799
1800
1801 static void (*setselect_handler) (rb_fde_t *, unsigned int, PF *, void *);
1802 static int (*select_handler) (long);
1803 static int (*setup_fd_handler) (rb_fde_t *);
1804 static int (*io_sched_event) (struct ev_entry *, int);
1805 static void (*io_unsched_event) (struct ev_entry *);
1806 static int (*io_supports_event) (void);
1807 static void (*io_init_event) (void);
1808 static char iotype[25];
1809
1810 const char *
1811 rb_get_iotype(void)
1812 {
1813 return iotype;
1814 }
1815
1816 static int
1817 rb_unsupported_event(void)
1818 {
1819 return 0;
1820 }
1821
1822 static int
1823 try_kqueue(void)
1824 {
1825 if(!rb_init_netio_kqueue())
1826 {
1827 setselect_handler = rb_setselect_kqueue;
1828 select_handler = rb_select_kqueue;
1829 setup_fd_handler = rb_setup_fd_kqueue;
1830 io_sched_event = rb_kqueue_sched_event;
1831 io_unsched_event = rb_kqueue_unsched_event;
1832 io_init_event = rb_kqueue_init_event;
1833 io_supports_event = rb_kqueue_supports_event;
1834 rb_strlcpy(iotype, "kqueue", sizeof(iotype));
1835 return 0;
1836 }
1837 return -1;
1838 }
1839
1840 static int
1841 try_epoll(void)
1842 {
1843 if(!rb_init_netio_epoll())
1844 {
1845 setselect_handler = rb_setselect_epoll;
1846 select_handler = rb_select_epoll;
1847 setup_fd_handler = rb_setup_fd_epoll;
1848 io_sched_event = rb_epoll_sched_event;
1849 io_unsched_event = rb_epoll_unsched_event;
1850 io_supports_event = rb_epoll_supports_event;
1851 io_init_event = rb_epoll_init_event;
1852 rb_strlcpy(iotype, "epoll", sizeof(iotype));
1853 return 0;
1854 }
1855 return -1;
1856 }
1857
1858 static int
1859 try_ports(void)
1860 {
1861 if(!rb_init_netio_ports())
1862 {
1863 setselect_handler = rb_setselect_ports;
1864 select_handler = rb_select_ports;
1865 setup_fd_handler = rb_setup_fd_ports;
1866 io_sched_event = rb_ports_sched_event;
1867 io_unsched_event = rb_ports_unsched_event;
1868 io_init_event = rb_ports_init_event;
1869 io_supports_event = rb_ports_supports_event;
1870 rb_strlcpy(iotype, "ports", sizeof(iotype));
1871 return 0;
1872 }
1873 return -1;
1874 }
1875
1876 static int
1877 try_devpoll(void)
1878 {
1879 if(!rb_init_netio_devpoll())
1880 {
1881 setselect_handler = rb_setselect_devpoll;
1882 select_handler = rb_select_devpoll;
1883 setup_fd_handler = rb_setup_fd_devpoll;
1884 io_sched_event = NULL;
1885 io_unsched_event = NULL;
1886 io_init_event = NULL;
1887 io_supports_event = rb_unsupported_event;
1888 rb_strlcpy(iotype, "devpoll", sizeof(iotype));
1889 return 0;
1890 }
1891 return -1;
1892 }
1893
1894 static int
1895 try_sigio(void)
1896 {
1897 if(!rb_init_netio_sigio())
1898 {
1899 setselect_handler = rb_setselect_sigio;
1900 select_handler = rb_select_sigio;
1901 setup_fd_handler = rb_setup_fd_sigio;
1902 io_sched_event = rb_sigio_sched_event;
1903 io_unsched_event = rb_sigio_unsched_event;
1904 io_supports_event = rb_sigio_supports_event;
1905 io_init_event = rb_sigio_init_event;
1906
1907 rb_strlcpy(iotype, "sigio", sizeof(iotype));
1908 return 0;
1909 }
1910 return -1;
1911 }
1912
1913 static int
1914 try_poll(void)
1915 {
1916 if(!rb_init_netio_poll())
1917 {
1918 setselect_handler = rb_setselect_poll;
1919 select_handler = rb_select_poll;
1920 setup_fd_handler = rb_setup_fd_poll;
1921 io_sched_event = NULL;
1922 io_unsched_event = NULL;
1923 io_init_event = NULL;
1924 io_supports_event = rb_unsupported_event;
1925 rb_strlcpy(iotype, "poll", sizeof(iotype));
1926 return 0;
1927 }
1928 return -1;
1929 }
1930
1931 static int
1932 try_win32(void)
1933 {
1934 if(!rb_init_netio_win32())
1935 {
1936 setselect_handler = rb_setselect_win32;
1937 select_handler = rb_select_win32;
1938 setup_fd_handler = rb_setup_fd_win32;
1939 io_sched_event = NULL;
1940 io_unsched_event = NULL;
1941 io_init_event = NULL;
1942 io_supports_event = rb_unsupported_event;
1943 rb_strlcpy(iotype, "win32", sizeof(iotype));
1944 return 0;
1945 }
1946 return -1;
1947 }
1948
1949 static int
1950 try_select(void)
1951 {
1952 if(!rb_init_netio_select())
1953 {
1954 setselect_handler = rb_setselect_select;
1955 select_handler = rb_select_select;
1956 setup_fd_handler = rb_setup_fd_select;
1957 io_sched_event = NULL;
1958 io_unsched_event = NULL;
1959 io_init_event = NULL;
1960 io_supports_event = rb_unsupported_event;
1961 rb_strlcpy(iotype, "select", sizeof(iotype));
1962 return 0;
1963 }
1964 return -1;
1965 }
1966
1967
1968 int
1969 rb_io_sched_event(struct ev_entry *ev, int when)
1970 {
1971 if(ev == NULL || io_supports_event == NULL || io_sched_event == NULL
1972 || !io_supports_event())
1973 return 0;
1974 return io_sched_event(ev, when);
1975 }
1976
1977 void
1978 rb_io_unsched_event(struct ev_entry *ev)
1979 {
1980 if(ev == NULL || io_supports_event == NULL || io_unsched_event == NULL
1981 || !io_supports_event())
1982 return;
1983 io_unsched_event(ev);
1984 }
1985
1986 int
1987 rb_io_supports_event(void)
1988 {
1989 if(io_supports_event == NULL)
1990 return 0;
1991 return io_supports_event();
1992 }
1993
1994 void
1995 rb_io_init_event(void)
1996 {
1997 io_init_event();
1998 rb_event_io_register_all();
1999 }
2000
2001 void
2002 rb_init_netio(void)
2003 {
2004 char *ioenv = getenv("LIBRB_USE_IOTYPE");
2005 rb_fd_table = rb_malloc(RB_FD_HASH_SIZE * sizeof(rb_dlink_list));
2006 rb_init_ssl();
2007
2008 if(ioenv != NULL)
2009 {
2010 if(!strcmp("epoll", ioenv))
2011 {
2012 if(!try_epoll())
2013 return;
2014 }
2015 else if(!strcmp("kqueue", ioenv))
2016 {
2017 if(!try_kqueue())
2018 return;
2019 }
2020 else if(!strcmp("ports", ioenv))
2021 {
2022 if(!try_ports())
2023 return;
2024 }
2025 else if(!strcmp("poll", ioenv))
2026 {
2027 if(!try_poll())
2028 return;
2029 }
2030 else if(!strcmp("devpoll", ioenv))
2031 {
2032 if(!try_devpoll())
2033 return;
2034 }
2035 else if(!strcmp("sigio", ioenv))
2036 {
2037 if(!try_sigio())
2038 return;
2039 }
2040 else if(!strcmp("select", ioenv))
2041 {
2042 if(!try_select())
2043 return;
2044 }
2045 if(!strcmp("win32", ioenv))
2046 {
2047 if(!try_win32())
2048 return;
2049 }
2050
2051 }
2052
2053 if(!try_kqueue())
2054 return;
2055 if(!try_epoll())
2056 return;
2057 if(!try_ports())
2058 return;
2059 if(!try_devpoll())
2060 return;
2061 if(!try_sigio())
2062 return;
2063 if(!try_poll())
2064 return;
2065 if(!try_win32())
2066 return;
2067 if(!try_select())
2068 return;
2069
2070 rb_lib_log("rb_init_netio: Could not find any io handlers...giving up");
2071
2072 abort();
2073 }
2074
2075 void
2076 rb_setselect(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
2077 {
2078 setselect_handler(F, type, handler, client_data);
2079 }
2080
2081 int
2082 rb_select(unsigned long timeout)
2083 {
2084 int ret = select_handler(timeout);
2085 free_fds();
2086 return ret;
2087 }
2088
2089 int
2090 rb_setup_fd(rb_fde_t *F)
2091 {
2092 return setup_fd_handler(F);
2093 }
2094
2095
2096 int
2097 rb_ignore_errno(int error)
2098 {
2099 switch (error)
2100 {
2101 #ifdef EINPROGRESS
2102 case EINPROGRESS:
2103 #endif
2104 #if defined EWOULDBLOCK
2105 case EWOULDBLOCK:
2106 #endif
2107 #if defined(EAGAIN) && (EWOULDBLOCK != EAGAIN)
2108 case EAGAIN:
2109 #endif
2110 #ifdef EINTR
2111 case EINTR:
2112 #endif
2113 #ifdef ERESTART
2114 case ERESTART:
2115 #endif
2116 #ifdef ENOBUFS
2117 case ENOBUFS:
2118 #endif
2119 return 1;
2120 default:
2121 break;
2122 }
2123 return 0;
2124 }
2125
2126
2127 #if defined(HAVE_SENDMSG) && !defined(WIN32)
2128 int
2129 rb_recv_fd_buf(rb_fde_t *F, void *data, size_t datasize, rb_fde_t **xF, int nfds)
2130 {
2131 struct msghdr msg;
2132 struct cmsghdr *cmsg;
2133 struct iovec iov[1];
2134 struct stat st;
2135 uint8_t stype = RB_FD_UNKNOWN;
2136 const char *desc;
2137 rb_platform_fd_t fd, len, x, rfds;
2138
2139 int control_len = CMSG_SPACE(sizeof(int) * nfds);
2140
2141 iov[0].iov_base = data;
2142 iov[0].iov_len = datasize;
2143
2144 msg.msg_name = NULL;
2145 msg.msg_namelen = 0;
2146 msg.msg_iov = iov;
2147 msg.msg_iovlen = 1;
2148 msg.msg_flags = 0;
2149 cmsg = alloca(control_len);
2150 msg.msg_control = cmsg;
2151 msg.msg_controllen = control_len;
2152
2153 if((len = recvmsg(rb_get_fd(F), &msg, 0)) <= 0)
2154 return len;
2155
2156 if(msg.msg_controllen > 0 && msg.msg_control != NULL
2157 && (cmsg = CMSG_FIRSTHDR(&msg)) != NULL)
2158 {
2159 rfds = ((unsigned char *)cmsg + cmsg->cmsg_len - CMSG_DATA(cmsg)) / sizeof(int);
2160
2161 for(x = 0; x < nfds && x < rfds; x++)
2162 {
2163 fd = ((int *)CMSG_DATA(cmsg))[x];
2164 stype = RB_FD_UNKNOWN;
2165 desc = "remote unknown";
2166 if(!fstat(fd, &st))
2167 {
2168 if(S_ISSOCK(st.st_mode))
2169 {
2170 stype = RB_FD_SOCKET;
2171 desc = "remote socket";
2172 }
2173 else if(S_ISFIFO(st.st_mode))
2174 {
2175 stype = RB_FD_PIPE;
2176 desc = "remote pipe";
2177 }
2178 else if(S_ISREG(st.st_mode))
2179 {
2180 stype = RB_FD_FILE;
2181 desc = "remote file";
2182 }
2183 }
2184 xF[x] = rb_open(fd, stype, desc);
2185 }
2186 }
2187 else
2188 *xF = NULL;
2189 return len;
2190 }
2191
2192
2193 int
2194 rb_send_fd_buf(rb_fde_t *xF, rb_fde_t **F, int count, void *data, size_t datasize, pid_t pid)
2195 {
2196 struct msghdr msg;
2197 struct cmsghdr *cmsg;
2198 struct iovec iov[1];
2199 char empty = '0';
2200
2201 memset(&msg, 0, sizeof(msg));
2202 if(datasize == 0)
2203 {
2204 iov[0].iov_base = &empty;
2205 iov[0].iov_len = 1;
2206 }
2207 else
2208 {
2209 iov[0].iov_base = data;
2210 iov[0].iov_len = datasize;
2211 }
2212 msg.msg_iov = iov;
2213 msg.msg_iovlen = 1;
2214 msg.msg_name = NULL;
2215 msg.msg_namelen = 0;
2216 msg.msg_flags = 0;
2217 msg.msg_control = NULL;
2218 msg.msg_controllen = 0;
2219
2220 if(count > 0)
2221 {
2222 size_t ucount = (size_t)count;
2223 int len = CMSG_SPACE(sizeof(int) * count);
2224 char buf[len];
2225
2226 msg.msg_control = buf;
2227 msg.msg_controllen = len;
2228 cmsg = CMSG_FIRSTHDR(&msg);
2229 cmsg->cmsg_level = SOL_SOCKET;
2230 cmsg->cmsg_type = SCM_RIGHTS;
2231 cmsg->cmsg_len = CMSG_LEN(sizeof(int) * count);
2232
2233 for(size_t i = 0; i < ucount; i++)
2234 {
2235 ((int *)CMSG_DATA(cmsg))[i] = rb_get_fd(F[i]);
2236 }
2237 msg.msg_controllen = cmsg->cmsg_len;
2238 return sendmsg(rb_get_fd(xF), &msg, MSG_NOSIGNAL);
2239 }
2240 return sendmsg(rb_get_fd(xF), &msg, MSG_NOSIGNAL);
2241 }
2242 #else /* defined(HAVE_SENDMSG) && !defined(WIN32) */
2243 #ifndef _WIN32
2244 int
2245 rb_recv_fd_buf(rb_fde_t *F, void *data, size_t datasize, rb_fde_t **xF, int nfds)
2246 {
2247 errno = ENOSYS;
2248 return -1;
2249 }
2250
2251 int
2252 rb_send_fd_buf(rb_fde_t *xF, rb_fde_t **F, int count, void *data, size_t datasize, pid_t pid)
2253 {
2254 errno = ENOSYS;
2255 return -1;
2256 }
2257 #endif /* _WIN32 */
2258 #endif /* defined(HAVE_SENDMSG) && !defined(WIN32) */
2259
2260 #ifdef RB_IPV6
2261 int
2262 rb_ipv4_from_ipv6(const struct sockaddr_in6 *restrict ip6, struct sockaddr_in *restrict ip4)
2263 {
2264 int i;
2265
2266 if (!memcmp(ip6->sin6_addr.s6_addr, "\x20\x02", 2))
2267 {
2268 /* 6to4 and similar */
2269 memcpy(&ip4->sin_addr, ip6->sin6_addr.s6_addr + 2, 4);
2270 }
2271 else if (!memcmp(ip6->sin6_addr.s6_addr, "\x20\x01\x00\x00", 4))
2272 {
2273 /* Teredo */
2274 for (i = 0; i < 4; i++)
2275 ((uint8_t *)&ip4->sin_addr)[i] = 0xFF ^
2276 ip6->sin6_addr.s6_addr[12 + i];
2277 }
2278 else
2279 return 0;
2280 SET_SS_LEN(ip4, sizeof(struct sockaddr_in));
2281 ip4->sin_family = AF_INET;
2282 ip4->sin_port = 0;
2283 return 1;
2284 }
2285 #else
2286 int
2287 rb_ipv4_from_ipv6(const struct sockaddr_in6 *restrict ip6, struct sockaddr_in *restrict ip4)
2288 {
2289 return 0;
2290 }
2291 #endif /* RB_IPV6 */