]> jfr.im git - solanum.git/blob - librb/src/commio.c
Change struct Dictionary(*) to rb_dictionary(_\1).
[solanum.git] / librb / src / commio.c
1 /*
2 * ircd-ratbox: A slightly useful ircd.
3 * commio.c: Network/file related functions
4 *
5 * Copyright (C) 1990 Jarkko Oikarinen and University of Oulu, Co Center
6 * Copyright (C) 1996-2002 Hybrid Development Team
7 * Copyright (C) 2002-2005 ircd-ratbox development team
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
22 * USA
23 *
24 * $Id: commio.c 26254 2008-12-10 04:04:38Z androsyn $
25 */
26 #include <librb_config.h>
27 #include <rb_lib.h>
28 #include <commio-int.h>
29 #include <commio-ssl.h>
30 #include <event-int.h>
31 #ifdef HAVE_SYS_UIO_H
32 #include <sys/uio.h>
33 #endif
34 #define HAVE_SSL 1
35
36 #ifndef MSG_NOSIGNAL
37 #define MSG_NOSIGNAL 0
38 #endif
39
40
41 struct timeout_data
42 {
43 rb_fde_t *F;
44 rb_dlink_node node;
45 time_t timeout;
46 PF *timeout_handler;
47 void *timeout_data;
48 };
49
50 rb_dlink_list *rb_fd_table;
51 static rb_bh *fd_heap;
52
53 static rb_dlink_list timeout_list;
54 static rb_dlink_list closed_list;
55
56 static struct ev_entry *rb_timeout_ev;
57
58
59 static const char *rb_err_str[] = { "Comm OK", "Error during bind()",
60 "Error during DNS lookup", "connect timeout",
61 "Error during connect()",
62 "Comm Error",
63 "Error with SSL"
64 };
65
66 /* Highest FD and number of open FDs .. */
67 static int number_fd = 0;
68 int rb_maxconnections = 0;
69
70 static PF rb_connect_timeout;
71 static PF rb_connect_tryconnect;
72 #ifdef RB_IPV6
73 static void mangle_mapped_sockaddr(struct sockaddr *in);
74 #endif
75
76 #ifndef HAVE_SOCKETPAIR
77 static int rb_inet_socketpair(int d, int type, int protocol, rb_platform_fd_t sv[2]);
78 static int rb_inet_socketpair_udp(rb_fde_t **newF1, rb_fde_t **newF2);
79 #endif
80
81 static inline rb_fde_t *
82 add_fd(rb_platform_fd_t fd)
83 {
84 rb_fde_t *F = rb_find_fd(fd);
85
86 /* look up to see if we have it already */
87 if(F != NULL)
88 return F;
89
90 F = rb_bh_alloc(fd_heap);
91 F->fd = fd;
92 rb_dlinkAdd(F, &F->node, &rb_fd_table[rb_hash_fd(fd)]);
93 return (F);
94 }
95
96 static inline void
97 remove_fd(rb_fde_t *F)
98 {
99 if(F == NULL || !IsFDOpen(F))
100 return;
101
102 rb_dlinkMoveNode(&F->node, &rb_fd_table[rb_hash_fd(F->fd)], &closed_list);
103 }
104
105 static void
106 free_fds(void)
107 {
108 rb_fde_t *F;
109 rb_dlink_node *ptr, *next;
110 RB_DLINK_FOREACH_SAFE(ptr, next, closed_list.head)
111 {
112 F = ptr->data;
113 rb_dlinkDelete(ptr, &closed_list);
114 rb_bh_free(fd_heap, F);
115 }
116 }
117
118 /* 32bit solaris is kinda slow and stdio only supports fds < 256
119 * so we got to do this crap below.
120 * (BTW Fuck you Sun, I hate your guts and I hope you go bankrupt soon)
121 */
122
123 #if defined (__SVR4) && defined (__sun)
124 static void
125 rb_fd_hack(int *fd)
126 {
127 int newfd;
128 if(*fd > 256 || *fd < 0)
129 return;
130 if((newfd = fcntl(*fd, F_DUPFD, 256)) != -1)
131 {
132 close(*fd);
133 *fd = newfd;
134 }
135 return;
136 }
137 #else
138 #define rb_fd_hack(fd)
139 #endif
140
141
142 /* close_all_connections() can be used *before* the system come up! */
143
144 static void
145 rb_close_all(void)
146 {
147 #ifndef _WIN32
148 int i;
149
150 /* XXX someone tell me why we care about 4 fd's ? */
151 /* XXX btw, fd 3 is used for profiler ! */
152 for(i = 3; i < rb_maxconnections; ++i)
153 {
154 close(i);
155 }
156 #endif
157 }
158
159 /*
160 * get_sockerr - get the error value from the socket or the current errno
161 *
162 * Get the *real* error from the socket (well try to anyway..).
163 * This may only work when SO_DEBUG is enabled but its worth the
164 * gamble anyway.
165 */
166 int
167 rb_get_sockerr(rb_fde_t *F)
168 {
169 int errtmp;
170 int err = 0;
171 rb_socklen_t len = sizeof(err);
172
173 if(!(F->type & RB_FD_SOCKET))
174 return errno;
175
176 rb_get_errno();
177 errtmp = errno;
178
179 #ifdef SO_ERROR
180 if(F != NULL
181 && !getsockopt(rb_get_fd(F), SOL_SOCKET, SO_ERROR, (char *)&err, (rb_socklen_t *) & len))
182 {
183 if(err)
184 errtmp = err;
185 }
186 errno = errtmp;
187 #endif
188 return errtmp;
189 }
190
191 /*
192 * rb_getmaxconnect - return the max number of connections allowed
193 */
194 int
195 rb_getmaxconnect(void)
196 {
197 return (rb_maxconnections);
198 }
199
200 /*
201 * set_sock_buffers - set send and receive buffers for socket
202 *
203 * inputs - fd file descriptor
204 * - size to set
205 * output - returns true (1) if successful, false (0) otherwise
206 * side effects -
207 */
208 int
209 rb_set_buffers(rb_fde_t *F, int size)
210 {
211 if(F == NULL)
212 return 0;
213 if(setsockopt
214 (F->fd, SOL_SOCKET, SO_RCVBUF, (char *)&size, sizeof(size))
215 || setsockopt(F->fd, SOL_SOCKET, SO_SNDBUF, (char *)&size, sizeof(size)))
216 return 0;
217 return 1;
218 }
219
220 /*
221 * set_non_blocking - Set the client connection into non-blocking mode.
222 *
223 * inputs - fd to set into non blocking mode
224 * output - 1 if successful 0 if not
225 * side effects - use POSIX compliant non blocking and
226 * be done with it.
227 */
228 int
229 rb_set_nb(rb_fde_t *F)
230 {
231 int nonb = 0;
232 int res;
233 rb_platform_fd_t fd;
234 if(F == NULL)
235 return 0;
236 fd = F->fd;
237
238 if((res = rb_setup_fd(F)))
239 return res;
240 #ifdef O_NONBLOCK
241 nonb |= O_NONBLOCK;
242 res = fcntl(fd, F_GETFL, 0);
243 if(-1 == res || fcntl(fd, F_SETFL, res | nonb) == -1)
244 return 0;
245 #else
246 nonb = 1;
247 res = 0;
248 if(ioctl(fd, FIONBIO, (char *)&nonb) == -1)
249 return 0;
250 #endif
251
252 return 1;
253 }
254
255 /*
256 * rb_settimeout() - set the socket timeout
257 *
258 * Set the timeout for the fd
259 */
260 void
261 rb_settimeout(rb_fde_t *F, time_t timeout, PF * callback, void *cbdata)
262 {
263 struct timeout_data *td;
264
265 if(F == NULL)
266 return;
267
268 lrb_assert(IsFDOpen(F));
269 td = F->timeout;
270 if(callback == NULL) /* user wants to remove */
271 {
272 if(td == NULL)
273 return;
274 rb_dlinkDelete(&td->node, &timeout_list);
275 rb_free(td);
276 F->timeout = NULL;
277 if(rb_dlink_list_length(&timeout_list) == 0)
278 {
279 rb_event_delete(rb_timeout_ev);
280 rb_timeout_ev = NULL;
281 }
282 return;
283 }
284
285 if(F->timeout == NULL)
286 td = F->timeout = rb_malloc(sizeof(struct timeout_data));
287
288 td->F = F;
289 td->timeout = rb_current_time() + timeout;
290 td->timeout_handler = callback;
291 td->timeout_data = cbdata;
292 rb_dlinkAdd(td, &td->node, &timeout_list);
293 if(rb_timeout_ev == NULL)
294 {
295 rb_timeout_ev = rb_event_add("rb_checktimeouts", rb_checktimeouts, NULL, 5);
296 }
297 }
298
299 /*
300 * rb_checktimeouts() - check the socket timeouts
301 *
302 * All this routine does is call the given callback/cbdata, without closing
303 * down the file descriptor. When close handlers have been implemented,
304 * this will happen.
305 */
306 void
307 rb_checktimeouts(void *notused)
308 {
309 rb_dlink_node *ptr, *next;
310 struct timeout_data *td;
311 rb_fde_t *F;
312 PF *hdl;
313 void *data;
314
315 RB_DLINK_FOREACH_SAFE(ptr, next, timeout_list.head)
316 {
317 td = ptr->data;
318 F = td->F;
319 if(F == NULL || !IsFDOpen(F))
320 continue;
321
322 if(td->timeout < rb_current_time())
323 {
324 hdl = td->timeout_handler;
325 data = td->timeout_data;
326 rb_dlinkDelete(&td->node, &timeout_list);
327 F->timeout = NULL;
328 rb_free(td);
329 hdl(F, data);
330 }
331 }
332 }
333
334 static void
335 rb_accept_tryaccept(rb_fde_t *F, void *data)
336 {
337 struct rb_sockaddr_storage st;
338 rb_fde_t *new_F;
339 rb_socklen_t addrlen = sizeof(st);
340 int new_fd;
341
342 while(1)
343 {
344 new_fd = accept(F->fd, (struct sockaddr *)&st, &addrlen);
345 rb_get_errno();
346 if(new_fd < 0)
347 {
348 rb_setselect(F, RB_SELECT_ACCEPT, rb_accept_tryaccept, NULL);
349 return;
350 }
351
352 rb_fd_hack(&new_fd);
353
354 new_F = rb_open(new_fd, RB_FD_SOCKET, "Incoming Connection");
355
356 if(new_F == NULL)
357 {
358 rb_lib_log
359 ("rb_accept: new_F == NULL on incoming connection. Closing new_fd == %d\n",
360 new_fd);
361 close(new_fd);
362 continue;
363 }
364
365 if(rb_unlikely(!rb_set_nb(new_F)))
366 {
367 rb_get_errno();
368 rb_lib_log("rb_accept: Couldn't set FD %d non blocking!", new_F->fd);
369 rb_close(new_F);
370 }
371
372 #ifdef RB_IPV6
373 mangle_mapped_sockaddr((struct sockaddr *)&st);
374 #endif
375
376 if(F->accept->precb != NULL)
377 {
378 if(!F->accept->precb(new_F, (struct sockaddr *)&st, addrlen, F->accept->data)) /* pre-callback decided to drop it */
379 continue;
380 }
381 #ifdef HAVE_SSL
382 if(F->type & RB_FD_SSL)
383 {
384 rb_ssl_accept_setup(F, new_F, (struct sockaddr *)&st, addrlen);
385 }
386 else
387 #endif /* HAVE_SSL */
388 {
389 F->accept->callback(new_F, RB_OK, (struct sockaddr *)&st, addrlen,
390 F->accept->data);
391 }
392 }
393
394 }
395
396 /* try to accept a TCP connection */
397 void
398 rb_accept_tcp(rb_fde_t *F, ACPRE * precb, ACCB * callback, void *data)
399 {
400 if(F == NULL)
401 return;
402 lrb_assert(callback);
403
404 F->accept = rb_malloc(sizeof(struct acceptdata));
405 F->accept->callback = callback;
406 F->accept->data = data;
407 F->accept->precb = precb;
408 rb_accept_tryaccept(F, NULL);
409 }
410
411 /*
412 * void rb_connect_tcp(rb_platform_fd_t fd, struct sockaddr *dest,
413 * struct sockaddr *clocal, int socklen,
414 * CNCB *callback, void *data, int timeout)
415 * Input: An fd to connect with, a host and port to connect to,
416 * a local sockaddr to connect from + length(or NULL to use the
417 * default), a callback, the data to pass into the callback, the
418 * address family.
419 * Output: None.
420 * Side-effects: A non-blocking connection to the host is started, and
421 * if necessary, set up for selection. The callback given
422 * may be called now, or it may be called later.
423 */
424 void
425 rb_connect_tcp(rb_fde_t *F, struct sockaddr *dest,
426 struct sockaddr *clocal, int socklen, CNCB * callback, void *data, int timeout)
427 {
428 if(F == NULL)
429 return;
430
431 lrb_assert(callback);
432 F->connect = rb_malloc(sizeof(struct conndata));
433 F->connect->callback = callback;
434 F->connect->data = data;
435
436 memcpy(&F->connect->hostaddr, dest, sizeof(F->connect->hostaddr));
437
438 /* Note that we're using a passed sockaddr here. This is because
439 * generally you'll be bind()ing to a sockaddr grabbed from
440 * getsockname(), so this makes things easier.
441 * XXX If NULL is passed as local, we should later on bind() to the
442 * virtual host IP, for completeness.
443 * -- adrian
444 */
445 if((clocal != NULL) && (bind(F->fd, clocal, socklen) < 0))
446 {
447 /* Failure, call the callback with RB_ERR_BIND */
448 rb_connect_callback(F, RB_ERR_BIND);
449 /* ... and quit */
450 return;
451 }
452
453 /* We have a valid IP, so we just call tryconnect */
454 /* Make sure we actually set the timeout here .. */
455 rb_settimeout(F, timeout, rb_connect_timeout, NULL);
456 rb_connect_tryconnect(F, NULL);
457 }
458
459
460 /*
461 * rb_connect_callback() - call the callback, and continue with life
462 */
463 void
464 rb_connect_callback(rb_fde_t *F, int status)
465 {
466 CNCB *hdl;
467 void *data;
468 int errtmp = errno; /* save errno as rb_settimeout clobbers it sometimes */
469
470 /* This check is gross..but probably necessary */
471 if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
472 return;
473 /* Clear the connect flag + handler */
474 hdl = F->connect->callback;
475 data = F->connect->data;
476 F->connect->callback = NULL;
477
478
479 /* Clear the timeout handler */
480 rb_settimeout(F, 0, NULL, NULL);
481 errno = errtmp;
482 /* Call the handler */
483 hdl(F, status, data);
484 }
485
486
487 /*
488 * rb_connect_timeout() - this gets called when the socket connection
489 * times out. This *only* can be called once connect() is initially
490 * called ..
491 */
492 static void
493 rb_connect_timeout(rb_fde_t *F, void *notused)
494 {
495 /* error! */
496 rb_connect_callback(F, RB_ERR_TIMEOUT);
497 }
498
499 /* static void rb_connect_tryconnect(rb_platform_fd_t fd, void *notused)
500 * Input: The fd, the handler data(unused).
501 * Output: None.
502 * Side-effects: Try and connect with pending connect data for the FD. If
503 * we succeed or get a fatal error, call the callback.
504 * Otherwise, it is still blocking or something, so register
505 * to select for a write event on this FD.
506 */
507 static void
508 rb_connect_tryconnect(rb_fde_t *F, void *notused)
509 {
510 int retval;
511
512 if(F == NULL || F->connect == NULL || F->connect->callback == NULL)
513 return;
514 /* Try the connect() */
515 retval = connect(F->fd,
516 (struct sockaddr *)&F->connect->hostaddr,
517 GET_SS_LEN(&F->connect->hostaddr));
518 /* Error? */
519 if(retval < 0)
520 {
521 /*
522 * If we get EISCONN, then we've already connect()ed the socket,
523 * which is a good thing.
524 * -- adrian
525 */
526 rb_get_errno();
527 if(errno == EISCONN)
528 rb_connect_callback(F, RB_OK);
529 else if(rb_ignore_errno(errno))
530 /* Ignore error? Reschedule */
531 rb_setselect(F, RB_SELECT_CONNECT, rb_connect_tryconnect, NULL);
532 else
533 /* Error? Fail with RB_ERR_CONNECT */
534 rb_connect_callback(F, RB_ERR_CONNECT);
535 return;
536 }
537 /* If we get here, we've suceeded, so call with RB_OK */
538 rb_connect_callback(F, RB_OK);
539 }
540
541
542 int
543 rb_connect_sockaddr(rb_fde_t *F, struct sockaddr *addr, int len)
544 {
545 if(F == NULL)
546 return 0;
547
548 memcpy(addr, &F->connect->hostaddr, len);
549 return 1;
550 }
551
552 /*
553 * rb_error_str() - return an error string for the given error condition
554 */
555 const char *
556 rb_errstr(int error)
557 {
558 if(error < 0 || error >= RB_ERR_MAX)
559 return "Invalid error number!";
560 return rb_err_str[error];
561 }
562
563
564 int
565 rb_socketpair(int family, int sock_type, int proto, rb_fde_t **F1, rb_fde_t **F2, const char *note)
566 {
567 rb_platform_fd_t nfd[2];
568 if(number_fd >= rb_maxconnections)
569 {
570 errno = ENFILE;
571 return -1;
572 }
573
574 #ifdef HAVE_SOCKETPAIR
575 if(socketpair(family, sock_type, proto, nfd))
576 #else
577 if(sock_type == SOCK_DGRAM)
578 {
579 return rb_inet_socketpair_udp(F1, F2);
580 }
581
582 if(rb_inet_socketpair(AF_INET, sock_type, proto, nfd))
583 #endif
584 return -1;
585
586 rb_fd_hack(&nfd[0]);
587 rb_fd_hack(&nfd[1]);
588
589 *F1 = rb_open(nfd[0], RB_FD_SOCKET, note);
590 *F2 = rb_open(nfd[1], RB_FD_SOCKET, note);
591
592 if(*F1 == NULL)
593 {
594 if(*F2 != NULL)
595 rb_close(*F2);
596 return -1;
597 }
598
599 if(*F2 == NULL)
600 {
601 rb_close(*F1);
602 return -1;
603 }
604
605 /* Set the socket non-blocking, and other wonderful bits */
606 if(rb_unlikely(!rb_set_nb(*F1)))
607 {
608 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[0], strerror(errno));
609 rb_close(*F1);
610 rb_close(*F2);
611 return -1;
612 }
613
614 if(rb_unlikely(!rb_set_nb(*F2)))
615 {
616 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", nfd[1], strerror(errno));
617 rb_close(*F1);
618 rb_close(*F2);
619 return -1;
620 }
621
622 return 0;
623 }
624
625
626 int
627 rb_pipe(rb_fde_t **F1, rb_fde_t **F2, const char *desc)
628 {
629 #ifndef _WIN32
630 rb_platform_fd_t fd[2];
631 if(number_fd >= rb_maxconnections)
632 {
633 errno = ENFILE;
634 return -1;
635 }
636 if(pipe(fd) == -1)
637 return -1;
638 rb_fd_hack(&fd[0]);
639 rb_fd_hack(&fd[1]);
640 *F1 = rb_open(fd[0], RB_FD_PIPE, desc);
641 *F2 = rb_open(fd[1], RB_FD_PIPE, desc);
642
643 if(rb_unlikely(!rb_set_nb(*F1)))
644 {
645 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[0], strerror(errno));
646 rb_close(*F1);
647 rb_close(*F2);
648 return -1;
649 }
650
651 if(rb_unlikely(!rb_set_nb(*F2)))
652 {
653 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd[1], strerror(errno));
654 rb_close(*F1);
655 rb_close(*F2);
656 return -1;
657 }
658
659
660 return 0;
661 #else
662 /* Its not a pipe..but its selectable. I'll take dirty hacks
663 * for $500 Alex.
664 */
665 return rb_socketpair(AF_INET, SOCK_STREAM, 0, F1, F2, desc);
666 #endif
667 }
668
669 /*
670 * rb_socket() - open a socket
671 *
672 * This is a highly highly cut down version of squid's rb_open() which
673 * for the most part emulates socket(), *EXCEPT* it fails if we're about
674 * to run out of file descriptors.
675 */
676 rb_fde_t *
677 rb_socket(int family, int sock_type, int proto, const char *note)
678 {
679 rb_fde_t *F;
680 rb_platform_fd_t fd;
681 /* First, make sure we aren't going to run out of file descriptors */
682 if(rb_unlikely(number_fd >= rb_maxconnections))
683 {
684 errno = ENFILE;
685 return NULL;
686 }
687
688 /*
689 * Next, we try to open the socket. We *should* drop the reserved FD
690 * limit if/when we get an error, but we can deal with that later.
691 * XXX !!! -- adrian
692 */
693 fd = socket(family, sock_type, proto);
694 rb_fd_hack(&fd);
695 if(rb_unlikely(fd < 0))
696 return NULL; /* errno will be passed through, yay.. */
697
698 #if defined(RB_IPV6) && defined(IPV6_V6ONLY)
699 /*
700 * Make sure we can take both IPv4 and IPv6 connections
701 * on an AF_INET6 socket
702 */
703 if(family == AF_INET6)
704 {
705 int off = 1;
706 if(setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (void *) &off, sizeof(off)) == -1)
707 {
708 rb_lib_log("rb_socket: Could not set IPV6_V6ONLY option to 1 on FD %d: %s",
709 fd, strerror(errno));
710 close(fd);
711 return NULL;
712 }
713 }
714 #endif
715
716 F = rb_open(fd, RB_FD_SOCKET, note);
717 if(F == NULL)
718 {
719 rb_lib_log("rb_socket: rb_open returns NULL on FD %d: %s, closing fd", fd,
720 strerror(errno));
721 close(fd);
722 return NULL;
723 }
724 /* Set the socket non-blocking, and other wonderful bits */
725 if(rb_unlikely(!rb_set_nb(F)))
726 {
727 rb_lib_log("rb_open: Couldn't set FD %d non blocking: %s", fd, strerror(errno));
728 rb_close(F);
729 return NULL;
730 }
731
732 return F;
733 }
734
735 /*
736 * If a sockaddr_storage is AF_INET6 but is a mapped IPv4
737 * socket manged the sockaddr.
738 */
739 #ifdef RB_IPV6
740 static void
741 mangle_mapped_sockaddr(struct sockaddr *in)
742 {
743 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)in;
744
745 if(in->sa_family == AF_INET)
746 return;
747
748 if(in->sa_family == AF_INET6 && IN6_IS_ADDR_V4MAPPED(&in6->sin6_addr))
749 {
750 struct sockaddr_in in4;
751 memset(&in4, 0, sizeof(struct sockaddr_in));
752 in4.sin_family = AF_INET;
753 in4.sin_port = in6->sin6_port;
754 in4.sin_addr.s_addr = ((uint32_t *)&in6->sin6_addr)[3];
755 memcpy(in, &in4, sizeof(struct sockaddr_in));
756 }
757 return;
758 }
759 #endif
760
761 /*
762 * rb_listen() - listen on a port
763 */
764 int
765 rb_listen(rb_fde_t *F, int backlog, int defer_accept)
766 {
767 int result;
768
769 F->type = RB_FD_SOCKET | RB_FD_LISTEN;
770 result = listen(F->fd, backlog);
771
772 #ifdef TCP_DEFER_ACCEPT
773 if (defer_accept && !result)
774 {
775 (void)setsockopt(F->fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &backlog, sizeof(int));
776 }
777 #endif
778 #ifdef SO_ACCEPTFILTER
779 if (defer_accept && !result)
780 {
781 struct accept_filter_arg afa;
782
783 memset(&afa, '\0', sizeof afa);
784 rb_strlcpy(afa.af_name, "dataready", sizeof afa.af_name);
785 (void)setsockopt(F->fd, SOL_SOCKET, SO_ACCEPTFILTER, &afa,
786 sizeof afa);
787 }
788 #endif
789
790 return result;
791 }
792
793 void
794 rb_fdlist_init(int closeall, int maxfds, size_t heapsize)
795 {
796 static int initialized = 0;
797 #ifdef _WIN32
798 WSADATA wsaData;
799 int err;
800 int vers = MAKEWORD(2, 0);
801
802 err = WSAStartup(vers, &wsaData);
803 if(err != 0)
804 {
805 rb_lib_die("WSAStartup failed");
806 }
807
808 #endif
809 if(!initialized)
810 {
811 rb_maxconnections = maxfds;
812 if(closeall)
813 rb_close_all();
814 /* Since we're doing this once .. */
815 initialized = 1;
816 }
817 fd_heap = rb_bh_create(sizeof(rb_fde_t), heapsize, "librb_fd_heap");
818
819 }
820
821
822 /* Called to open a given filedescriptor */
823 rb_fde_t *
824 rb_open(rb_platform_fd_t fd, uint8_t type, const char *desc)
825 {
826 rb_fde_t *F;
827 lrb_assert(fd >= 0);
828
829 F = add_fd(fd);
830
831 lrb_assert(!IsFDOpen(F));
832 if(rb_unlikely(IsFDOpen(F)))
833 {
834 const char *fdesc;
835 if(F != NULL && F->desc != NULL)
836 fdesc = F->desc;
837 else
838 fdesc = "NULL";
839 rb_lib_log("Trying to rb_open an already open FD: %d desc: %s", fd, fdesc);
840 return NULL;
841 }
842 F->fd = fd;
843 F->type = type;
844 SetFDOpen(F);
845
846 if(desc != NULL)
847 F->desc = rb_strndup(desc, FD_DESC_SZ);
848 number_fd++;
849 return F;
850 }
851
852
853 /* Called to close a given filedescriptor */
854 void
855 rb_close(rb_fde_t *F)
856 {
857 int type, fd;
858
859 if(F == NULL)
860 return;
861
862 fd = F->fd;
863 type = F->type;
864 lrb_assert(IsFDOpen(F));
865
866 lrb_assert(!(type & RB_FD_FILE));
867 if(rb_unlikely(type & RB_FD_FILE))
868 {
869 lrb_assert(F->read_handler == NULL);
870 lrb_assert(F->write_handler == NULL);
871 }
872 rb_setselect(F, RB_SELECT_WRITE | RB_SELECT_READ, NULL, NULL);
873 rb_settimeout(F, 0, NULL, NULL);
874 rb_free(F->accept);
875 rb_free(F->connect);
876 rb_free(F->desc);
877 #ifdef HAVE_SSL
878 if(type & RB_FD_SSL)
879 {
880 rb_ssl_shutdown(F);
881 }
882 #endif /* HAVE_SSL */
883 if(IsFDOpen(F))
884 {
885 remove_fd(F);
886 ClearFDOpen(F);
887 }
888
889 number_fd--;
890
891 #ifdef _WIN32
892 if(type & (RB_FD_SOCKET | RB_FD_PIPE))
893 {
894 closesocket(fd);
895 return;
896 }
897 else
898 #endif
899 close(fd);
900 }
901
902
903 /*
904 * rb_dump_fd() - dump the list of active filedescriptors
905 */
906 void
907 rb_dump_fd(DUMPCB * cb, void *data)
908 {
909 static const char *empty = "";
910 rb_dlink_node *ptr;
911 rb_dlink_list *bucket;
912 rb_fde_t *F;
913 unsigned int i;
914
915 for(i = 0; i < RB_FD_HASH_SIZE; i++)
916 {
917 bucket = &rb_fd_table[i];
918
919 if(rb_dlink_list_length(bucket) <= 0)
920 continue;
921
922 RB_DLINK_FOREACH(ptr, bucket->head)
923 {
924 F = ptr->data;
925 if(F == NULL || !IsFDOpen(F))
926 continue;
927
928 cb(F->fd, F->desc ? F->desc : empty, data);
929 }
930 }
931 }
932
933 /*
934 * rb_note() - set the fd note
935 *
936 * Note: must be careful not to overflow rb_fd_table[fd].desc when
937 * calling.
938 */
939 void
940 rb_note(rb_fde_t *F, const char *string)
941 {
942 if(F == NULL)
943 return;
944
945 rb_free(F->desc);
946 F->desc = rb_strndup(string, FD_DESC_SZ);
947 }
948
949 void
950 rb_set_type(rb_fde_t *F, uint8_t type)
951 {
952 /* if the caller is calling this, lets assume they have a clue */
953 F->type = type;
954 return;
955 }
956
957 uint8_t
958 rb_get_type(rb_fde_t *F)
959 {
960 return F->type;
961 }
962
963 int
964 rb_fd_ssl(rb_fde_t *F)
965 {
966 if(F == NULL)
967 return 0;
968 if(F->type & RB_FD_SSL)
969 return 1;
970 return 0;
971 }
972
973 rb_platform_fd_t
974 rb_get_fd(rb_fde_t *F)
975 {
976 if(F == NULL)
977 return -1;
978 return (F->fd);
979 }
980
981 rb_fde_t *
982 rb_get_fde(rb_platform_fd_t fd)
983 {
984 return rb_find_fd(fd);
985 }
986
987 ssize_t
988 rb_read(rb_fde_t *F, void *buf, int count)
989 {
990 ssize_t ret;
991 if(F == NULL)
992 return 0;
993
994 /* This needs to be *before* RB_FD_SOCKET otherwise you'll process
995 * an SSL socket as a regular socket
996 */
997 #ifdef HAVE_SSL
998 if(F->type & RB_FD_SSL)
999 {
1000 return rb_ssl_read(F, buf, count);
1001 }
1002 #endif
1003 if(F->type & RB_FD_SOCKET)
1004 {
1005 ret = recv(F->fd, buf, count, 0);
1006 if(ret < 0)
1007 {
1008 rb_get_errno();
1009 }
1010 return ret;
1011 }
1012
1013
1014 /* default case */
1015 return read(F->fd, buf, count);
1016 }
1017
1018
1019 ssize_t
1020 rb_write(rb_fde_t *F, const void *buf, int count)
1021 {
1022 ssize_t ret;
1023 if(F == NULL)
1024 return 0;
1025
1026 #ifdef HAVE_SSL
1027 if(F->type & RB_FD_SSL)
1028 {
1029 return rb_ssl_write(F, buf, count);
1030 }
1031 #endif
1032 if(F->type & RB_FD_SOCKET)
1033 {
1034 ret = send(F->fd, buf, count, MSG_NOSIGNAL);
1035 if(ret < 0)
1036 {
1037 rb_get_errno();
1038 }
1039 return ret;
1040 }
1041
1042 return write(F->fd, buf, count);
1043 }
1044
1045 #if defined(HAVE_SSL) || defined(WIN32) || !defined(HAVE_WRITEV)
1046 static ssize_t
1047 rb_fake_writev(rb_fde_t *F, const struct rb_iovec *vp, size_t vpcount)
1048 {
1049 ssize_t count = 0;
1050
1051 while(vpcount-- > 0)
1052 {
1053 ssize_t written = rb_write(F, vp->iov_base, vp->iov_len);
1054
1055 if(written <= 0)
1056 {
1057 if(count > 0)
1058 return count;
1059 else
1060 return written;
1061 }
1062 count += written;
1063 vp++;
1064 }
1065 return (count);
1066 }
1067 #endif
1068
1069 #if defined(WIN32) || !defined(HAVE_WRITEV)
1070 ssize_t
1071 rb_writev(rb_fde_t *F, struct rb_iovec * vecount, int count)
1072 {
1073 return rb_fake_writev(F, vecount, count);
1074 }
1075
1076 #else
1077 ssize_t
1078 rb_writev(rb_fde_t *F, struct rb_iovec * vector, int count)
1079 {
1080 if(F == NULL)
1081 {
1082 errno = EBADF;
1083 return -1;
1084 }
1085 #ifdef HAVE_SSL
1086 if(F->type & RB_FD_SSL)
1087 {
1088 return rb_fake_writev(F, vector, count);
1089 }
1090 #endif /* HAVE_SSL */
1091 #ifdef HAVE_SENDMSG
1092 if(F->type & RB_FD_SOCKET)
1093 {
1094 struct msghdr msg;
1095 memset(&msg, 0, sizeof(msg));
1096 msg.msg_iov = (struct iovec *)vector;
1097 msg.msg_iovlen = count;
1098 return sendmsg(F->fd, &msg, MSG_NOSIGNAL);
1099 }
1100 #endif /* HAVE_SENDMSG */
1101 return writev(F->fd, (struct iovec *)vector, count);
1102
1103 }
1104 #endif
1105
1106
1107 /*
1108 * From: Thomas Helvey <tomh@inxpress.net>
1109 */
1110 static const char *IpQuadTab[] = {
1111 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
1112 "10", "11", "12", "13", "14", "15", "16", "17", "18", "19",
1113 "20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
1114 "30", "31", "32", "33", "34", "35", "36", "37", "38", "39",
1115 "40", "41", "42", "43", "44", "45", "46", "47", "48", "49",
1116 "50", "51", "52", "53", "54", "55", "56", "57", "58", "59",
1117 "60", "61", "62", "63", "64", "65", "66", "67", "68", "69",
1118 "70", "71", "72", "73", "74", "75", "76", "77", "78", "79",
1119 "80", "81", "82", "83", "84", "85", "86", "87", "88", "89",
1120 "90", "91", "92", "93", "94", "95", "96", "97", "98", "99",
1121 "100", "101", "102", "103", "104", "105", "106", "107", "108", "109",
1122 "110", "111", "112", "113", "114", "115", "116", "117", "118", "119",
1123 "120", "121", "122", "123", "124", "125", "126", "127", "128", "129",
1124 "130", "131", "132", "133", "134", "135", "136", "137", "138", "139",
1125 "140", "141", "142", "143", "144", "145", "146", "147", "148", "149",
1126 "150", "151", "152", "153", "154", "155", "156", "157", "158", "159",
1127 "160", "161", "162", "163", "164", "165", "166", "167", "168", "169",
1128 "170", "171", "172", "173", "174", "175", "176", "177", "178", "179",
1129 "180", "181", "182", "183", "184", "185", "186", "187", "188", "189",
1130 "190", "191", "192", "193", "194", "195", "196", "197", "198", "199",
1131 "200", "201", "202", "203", "204", "205", "206", "207", "208", "209",
1132 "210", "211", "212", "213", "214", "215", "216", "217", "218", "219",
1133 "220", "221", "222", "223", "224", "225", "226", "227", "228", "229",
1134 "230", "231", "232", "233", "234", "235", "236", "237", "238", "239",
1135 "240", "241", "242", "243", "244", "245", "246", "247", "248", "249",
1136 "250", "251", "252", "253", "254", "255"
1137 };
1138
1139 /*
1140 * inetntoa - in_addr to string
1141 * changed name to remove collision possibility and
1142 * so behaviour is guaranteed to take a pointer arg.
1143 * -avalon 23/11/92
1144 * inet_ntoa -- returned the dotted notation of a given
1145 * internet number
1146 * argv 11/90).
1147 * inet_ntoa -- its broken on some Ultrix/Dynix too. -avalon
1148 */
1149
1150 static const char *
1151 inetntoa(const char *in)
1152 {
1153 static char buf[16];
1154 char *bufptr = buf;
1155 const unsigned char *a = (const unsigned char *)in;
1156 const char *n;
1157
1158 n = IpQuadTab[*a++];
1159 while(*n)
1160 *bufptr++ = *n++;
1161 *bufptr++ = '.';
1162 n = IpQuadTab[*a++];
1163 while(*n)
1164 *bufptr++ = *n++;
1165 *bufptr++ = '.';
1166 n = IpQuadTab[*a++];
1167 while(*n)
1168 *bufptr++ = *n++;
1169 *bufptr++ = '.';
1170 n = IpQuadTab[*a];
1171 while(*n)
1172 *bufptr++ = *n++;
1173 *bufptr = '\0';
1174 return buf;
1175 }
1176
1177 /*
1178 * WARNING: Don't even consider trying to compile this on a system where
1179 * sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
1180 */
1181
1182 static const char *inet_ntop4(const unsigned char *src, char *dst, unsigned int size);
1183 #ifdef RB_IPV6
1184 static const char *inet_ntop6(const unsigned char *src, char *dst, unsigned int size);
1185 #endif
1186
1187 /* const char *
1188 * inet_ntop4(src, dst, size)
1189 * format an IPv4 address
1190 * return:
1191 * `dst' (as a const)
1192 * notes:
1193 * (1) uses no statics
1194 * (2) takes a unsigned char* not an in_addr as input
1195 * author:
1196 * Paul Vixie, 1996.
1197 */
1198 static const char *
1199 inet_ntop4(const unsigned char *src, char *dst, unsigned int size)
1200 {
1201 if(size < 16)
1202 return NULL;
1203 return strcpy(dst, inetntoa((const char *)src));
1204 }
1205
1206 /* const char *
1207 * inet_ntop6(src, dst, size)
1208 * convert IPv6 binary address into presentation (printable) format
1209 * author:
1210 * Paul Vixie, 1996.
1211 */
1212 #ifdef RB_IPV6
1213 static const char *
1214 inet_ntop6(const unsigned char *src, char *dst, unsigned int size)
1215 {
1216 /*
1217 * Note that int32_t and int16_t need only be "at least" large enough
1218 * to contain a value of the specified size. On some systems, like
1219 * Crays, there is no such thing as an integer variable with 16 bits.
1220 * Keep this in mind if you think this function should have been coded
1221 * to use pointer overlays. All the world's not a VAX.
1222 */
1223 char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"], *tp;
1224 struct
1225 {
1226 int base, len;
1227 }
1228 best, cur;
1229 unsigned int words[IN6ADDRSZ / INT16SZ];
1230 int i;
1231
1232 /*
1233 * Preprocess:
1234 * Copy the input (bytewise) array into a wordwise array.
1235 * Find the longest run of 0x00's in src[] for :: shorthanding.
1236 */
1237 memset(words, '\0', sizeof words);
1238 for(i = 0; i < IN6ADDRSZ; i += 2)
1239 words[i / 2] = (src[i] << 8) | src[i + 1];
1240 best.base = -1;
1241 best.len = 0;
1242 cur.base = -1;
1243 cur.len = 0;
1244 for(i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
1245 {
1246 if(words[i] == 0)
1247 {
1248 if(cur.base == -1)
1249 cur.base = i, cur.len = 1;
1250 else
1251 cur.len++;
1252 }
1253 else
1254 {
1255 if(cur.base != -1)
1256 {
1257 if(best.base == -1 || cur.len > best.len)
1258 best = cur;
1259 cur.base = -1;
1260 }
1261 }
1262 }
1263 if(cur.base != -1)
1264 {
1265 if(best.base == -1 || cur.len > best.len)
1266 best = cur;
1267 }
1268 if(best.base != -1 && best.len < 2)
1269 best.base = -1;
1270
1271 /*
1272 * Format the result.
1273 */
1274 tp = tmp;
1275 for(i = 0; i < (IN6ADDRSZ / INT16SZ); i++)
1276 {
1277 /* Are we inside the best run of 0x00's? */
1278 if(best.base != -1 && i >= best.base && i < (best.base + best.len))
1279 {
1280 if(i == best.base)
1281 {
1282 if(i == 0)
1283 *tp++ = '0';
1284 *tp++ = ':';
1285 }
1286 continue;
1287 }
1288 /* Are we following an initial run of 0x00s or any real hex? */
1289 if(i != 0)
1290 *tp++ = ':';
1291 /* Is this address an encapsulated IPv4? */
1292 if(i == 6 && best.base == 0 &&
1293 (best.len == 6 || (best.len == 5 && words[5] == 0xffff)))
1294 {
1295 if(!inet_ntop4(src + 12, tp, sizeof tmp - (tp - tmp)))
1296 return (NULL);
1297 tp += strlen(tp);
1298 break;
1299 }
1300 tp += sprintf(tp, "%x", words[i]);
1301 }
1302 /* Was it a trailing run of 0x00's? */
1303 if(best.base != -1 && (best.base + best.len) == (IN6ADDRSZ / INT16SZ))
1304 *tp++ = ':';
1305 *tp++ = '\0';
1306
1307 /*
1308 * Check for overflow, copy, and we're done.
1309 */
1310
1311 if((unsigned int)(tp - tmp) > size)
1312 {
1313 return (NULL);
1314 }
1315 return memcpy(dst, tmp, tp - tmp);
1316 }
1317 #endif
1318
1319 int
1320 rb_inet_pton_sock(const char *src, struct sockaddr *dst)
1321 {
1322 if(rb_inet_pton(AF_INET, src, &((struct sockaddr_in *)dst)->sin_addr))
1323 {
1324 ((struct sockaddr_in *)dst)->sin_port = 0;
1325 ((struct sockaddr_in *)dst)->sin_family = AF_INET;
1326 SET_SS_LEN(dst, sizeof(struct sockaddr_in));
1327 return 1;
1328 }
1329 #ifdef RB_IPV6
1330 else if(rb_inet_pton(AF_INET6, src, &((struct sockaddr_in6 *)dst)->sin6_addr))
1331 {
1332 ((struct sockaddr_in6 *)dst)->sin6_port = 0;
1333 ((struct sockaddr_in6 *)dst)->sin6_family = AF_INET6;
1334 SET_SS_LEN(dst, sizeof(struct sockaddr_in6));
1335 return 1;
1336 }
1337 #endif
1338 return 0;
1339 }
1340
1341 const char *
1342 rb_inet_ntop_sock(struct sockaddr *src, char *dst, unsigned int size)
1343 {
1344 switch (src->sa_family)
1345 {
1346 case AF_INET:
1347 return (rb_inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, dst, size));
1348 break;
1349 #ifdef RB_IPV6
1350 case AF_INET6:
1351 return (rb_inet_ntop
1352 (AF_INET6, &((struct sockaddr_in6 *)src)->sin6_addr, dst, size));
1353 break;
1354 #endif
1355 default:
1356 return NULL;
1357 break;
1358 }
1359 }
1360
1361 /* char *
1362 * rb_inet_ntop(af, src, dst, size)
1363 * convert a network format address to presentation format.
1364 * return:
1365 * pointer to presentation format address (`dst'), or NULL (see errno).
1366 * author:
1367 * Paul Vixie, 1996.
1368 */
1369 const char *
1370 rb_inet_ntop(int af, const void *src, char *dst, unsigned int size)
1371 {
1372 switch (af)
1373 {
1374 case AF_INET:
1375 return (inet_ntop4(src, dst, size));
1376 #ifdef RB_IPV6
1377 case AF_INET6:
1378 if(IN6_IS_ADDR_V4MAPPED((const struct in6_addr *)src) ||
1379 IN6_IS_ADDR_V4COMPAT((const struct in6_addr *)src))
1380 return (inet_ntop4
1381 ((const unsigned char *)&((const struct in6_addr *)src)->
1382 s6_addr[12], dst, size));
1383 else
1384 return (inet_ntop6(src, dst, size));
1385
1386
1387 #endif
1388 default:
1389 return (NULL);
1390 }
1391 /* NOTREACHED */
1392 }
1393
1394 /*
1395 * WARNING: Don't even consider trying to compile this on a system where
1396 * sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
1397 */
1398
1399 /* int
1400 * rb_inet_pton(af, src, dst)
1401 * convert from presentation format (which usually means ASCII printable)
1402 * to network format (which is usually some kind of binary format).
1403 * return:
1404 * 1 if the address was valid for the specified address family
1405 * 0 if the address wasn't valid (`dst' is untouched in this case)
1406 * -1 if some other error occurred (`dst' is untouched in this case, too)
1407 * author:
1408 * Paul Vixie, 1996.
1409 */
1410
1411 /* int
1412 * inet_pton4(src, dst)
1413 * like inet_aton() but without all the hexadecimal and shorthand.
1414 * return:
1415 * 1 if `src' is a valid dotted quad, else 0.
1416 * notice:
1417 * does not touch `dst' unless it's returning 1.
1418 * author:
1419 * Paul Vixie, 1996.
1420 */
1421 static int
1422 inet_pton4(const char *src, unsigned char *dst)
1423 {
1424 int saw_digit, octets, ch;
1425 unsigned char tmp[INADDRSZ], *tp;
1426
1427 saw_digit = 0;
1428 octets = 0;
1429 *(tp = tmp) = 0;
1430 while((ch = *src++) != '\0')
1431 {
1432
1433 if(ch >= '0' && ch <= '9')
1434 {
1435 unsigned int new = *tp * 10 + (ch - '0');
1436
1437 if(new > 255)
1438 return (0);
1439 *tp = new;
1440 if(!saw_digit)
1441 {
1442 if(++octets > 4)
1443 return (0);
1444 saw_digit = 1;
1445 }
1446 }
1447 else if(ch == '.' && saw_digit)
1448 {
1449 if(octets == 4)
1450 return (0);
1451 *++tp = 0;
1452 saw_digit = 0;
1453 }
1454 else
1455 return (0);
1456 }
1457 if(octets < 4)
1458 return (0);
1459 memcpy(dst, tmp, INADDRSZ);
1460 return (1);
1461 }
1462
1463 #ifdef RB_IPV6
1464 /* int
1465 * inet_pton6(src, dst)
1466 * convert presentation level address to network order binary form.
1467 * return:
1468 * 1 if `src' is a valid [RFC1884 2.2] address, else 0.
1469 * notice:
1470 * (1) does not touch `dst' unless it's returning 1.
1471 * (2) :: in a full address is silently ignored.
1472 * credit:
1473 * inspired by Mark Andrews.
1474 * author:
1475 * Paul Vixie, 1996.
1476 */
1477
1478 static int
1479 inet_pton6(const char *src, unsigned char *dst)
1480 {
1481 static const char xdigits[] = "0123456789abcdef";
1482 unsigned char tmp[IN6ADDRSZ], *tp, *endp, *colonp;
1483 const char *curtok;
1484 int ch, saw_xdigit;
1485 unsigned int val;
1486
1487 tp = memset(tmp, '\0', IN6ADDRSZ);
1488 endp = tp + IN6ADDRSZ;
1489 colonp = NULL;
1490 /* Leading :: requires some special handling. */
1491 if(*src == ':')
1492 if(*++src != ':')
1493 return (0);
1494 curtok = src;
1495 saw_xdigit = 0;
1496 val = 0;
1497 while((ch = tolower((unsigned char)*src++)) != '\0')
1498 {
1499 const char *pch;
1500
1501 pch = strchr(xdigits, ch);
1502 if(pch != NULL)
1503 {
1504 val <<= 4;
1505 val |= (pch - xdigits);
1506 if(val > 0xffff)
1507 return (0);
1508 saw_xdigit = 1;
1509 continue;
1510 }
1511 if(ch == ':')
1512 {
1513 curtok = src;
1514 if(!saw_xdigit)
1515 {
1516 if(colonp)
1517 return (0);
1518 colonp = tp;
1519 continue;
1520 }
1521 else if(*src == '\0')
1522 {
1523 return (0);
1524 }
1525 if(tp + INT16SZ > endp)
1526 return (0);
1527 *tp++ = (unsigned char)(val >> 8) & 0xff;
1528 *tp++ = (unsigned char)val & 0xff;
1529 saw_xdigit = 0;
1530 val = 0;
1531 continue;
1532 }
1533 if(*src != '\0' && ch == '.')
1534 {
1535 if(((tp + INADDRSZ) <= endp) && inet_pton4(curtok, tp) > 0)
1536 {
1537 tp += INADDRSZ;
1538 saw_xdigit = 0;
1539 break; /* '\0' was seen by inet_pton4(). */
1540 }
1541 }
1542 else
1543 continue;
1544 return (0);
1545 }
1546 if(saw_xdigit)
1547 {
1548 if(tp + INT16SZ > endp)
1549 return (0);
1550 *tp++ = (unsigned char)(val >> 8) & 0xff;
1551 *tp++ = (unsigned char)val & 0xff;
1552 }
1553 if(colonp != NULL)
1554 {
1555 /*
1556 * Since some memmove()'s erroneously fail to handle
1557 * overlapping regions, we'll do the shift by hand.
1558 */
1559 const int n = tp - colonp;
1560 int i;
1561
1562 if(tp == endp)
1563 return (0);
1564 for(i = 1; i <= n; i++)
1565 {
1566 endp[-i] = colonp[n - i];
1567 colonp[n - i] = 0;
1568 }
1569 tp = endp;
1570 }
1571 if(tp != endp)
1572 return (0);
1573 memcpy(dst, tmp, IN6ADDRSZ);
1574 return (1);
1575 }
1576 #endif
1577 int
1578 rb_inet_pton(int af, const char *src, void *dst)
1579 {
1580 switch (af)
1581 {
1582 case AF_INET:
1583 return (inet_pton4(src, dst));
1584 #ifdef RB_IPV6
1585 case AF_INET6:
1586 /* Somebody might have passed as an IPv4 address this is sick but it works */
1587 if(inet_pton4(src, dst))
1588 {
1589 char tmp[HOSTIPLEN];
1590 sprintf(tmp, "::ffff:%s", src);
1591 return (inet_pton6(tmp, dst));
1592 }
1593 else
1594 return (inet_pton6(src, dst));
1595 #endif
1596 default:
1597 return (-1);
1598 }
1599 /* NOTREACHED */
1600 }
1601
1602
1603 #ifndef HAVE_SOCKETPAIR
1604
1605 /* mostly based on perl's emulation of socketpair udp */
1606 static int
1607 rb_inet_socketpair_udp(rb_fde_t **newF1, rb_fde_t **newF2)
1608 {
1609 struct sockaddr_in addr[2];
1610 rb_socklen_t size = sizeof(struct sockaddr_in);
1611 rb_fde_t *F[2];
1612 rb_platform_fd_t fd[2];
1613 int i, got;
1614 unsigned short port;
1615 struct timeval wait = { 0, 100000 };
1616 int max;
1617 fd_set rset;
1618 struct sockaddr_in readfrom;
1619 unsigned short buf[2];
1620 int o_errno;
1621
1622 memset(&addr, 0, sizeof(addr));
1623
1624 for(i = 0; i < 2; i++)
1625 {
1626 F[i] = rb_socket(AF_INET, SOCK_DGRAM, 0, "udp socketpair");
1627 if(F[i] == NULL)
1628 goto failed;
1629 addr[i].sin_family = AF_INET;
1630 addr[i].sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1631 addr[i].sin_port = 0;
1632 if(bind(rb_get_fd(F[i]), (struct sockaddr *)&addr[i], sizeof(struct sockaddr_in)))
1633 goto failed;
1634 fd[i] = rb_get_fd(F[i]);
1635 }
1636
1637 for(i = 0; i < 2; i++)
1638 {
1639 if(getsockname(fd[i], (struct sockaddr *)&addr[i], &size))
1640 goto failed;
1641 if(size != sizeof(struct sockaddr_in))
1642 goto failed;
1643 if(connect(fd[!i], (struct sockaddr *)&addr[i], sizeof(struct sockaddr_in)) == -1)
1644 goto failed;
1645 }
1646
1647 for(i = 0; i < 2; i++)
1648 {
1649 port = addr[i].sin_port;
1650 got = rb_write(F[i], &port, sizeof(port));
1651 if(got != sizeof(port))
1652 {
1653 if(got == -1)
1654 goto failed;
1655 goto abort_failed;
1656 }
1657 }
1658
1659 max = fd[1] > fd[0] ? fd[1] : fd[0];
1660 FD_ZERO(&rset);
1661 FD_SET(fd[0], &rset);
1662 FD_SET(fd[1], &rset);
1663 got = select(max + 1, &rset, NULL, NULL, &wait);
1664 if(got != 2 || !FD_ISSET(fd[0], &rset) || !FD_ISSET(fd[1], &rset))
1665 {
1666 if(got == -1)
1667 goto failed;
1668 goto abort_failed;
1669 }
1670
1671 for(i = 0; i < 2; i++)
1672 {
1673 #ifdef MSG_DONTWAIT
1674 int flag = MSG_DONTWAIT
1675 #else
1676 int flag = 0;
1677 #endif
1678 got = recvfrom(rb_get_fd(F[i]), (char *)&buf, sizeof(buf), flag,
1679 (struct sockaddr *)&readfrom, &size);
1680 if(got == -1)
1681 goto failed;
1682 if(got != sizeof(port)
1683 || size != sizeof(struct sockaddr_in)
1684 || buf[0] != (unsigned short)addr[!i].sin_port
1685 || readfrom.sin_family != addr[!i].sin_family
1686 || readfrom.sin_addr.s_addr != addr[!i].sin_addr.s_addr
1687 || readfrom.sin_port != addr[!i].sin_port)
1688 goto abort_failed;
1689 }
1690
1691 *newF1 = F[0];
1692 *newF2 = F[1];
1693 return 0;
1694
1695 #ifdef _WIN32
1696 #ifndef ECONNABORTED
1697 #define ECONNABORTED WSAECONNABORTED
1698 #endif
1699 #endif
1700
1701 abort_failed:
1702 rb_get_errno();
1703 errno = ECONNABORTED;
1704 failed:
1705 if(errno != ECONNABORTED)
1706 rb_get_errno();
1707 o_errno = errno;
1708 if(F[0] != NULL)
1709 rb_close(F[0]);
1710 if(F[1] != NULL)
1711 rb_close(F[1]);
1712 errno = o_errno;
1713 return -1;
1714 }
1715
1716
1717 int
1718 rb_inet_socketpair(int family, int type, int protocol, rb_platform_fd_t fd[2])
1719 {
1720 int listener = -1;
1721 int connector = -1;
1722 int acceptor = -1;
1723 struct sockaddr_in listen_addr;
1724 struct sockaddr_in connect_addr;
1725 rb_socklen_t size;
1726
1727 if(protocol || family != AF_INET)
1728 {
1729 errno = EAFNOSUPPORT;
1730 return -1;
1731 }
1732 if(!fd)
1733 {
1734 errno = EINVAL;
1735 return -1;
1736 }
1737
1738 listener = socket(AF_INET, type, 0);
1739 if(listener == -1)
1740 return -1;
1741 memset(&listen_addr, 0, sizeof(listen_addr));
1742 listen_addr.sin_family = AF_INET;
1743 listen_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1744 listen_addr.sin_port = 0; /* kernel choses port. */
1745 if(bind(listener, (struct sockaddr *)&listen_addr, sizeof(listen_addr)) == -1)
1746 goto tidy_up_and_fail;
1747 if(listen(listener, 1) == -1)
1748 goto tidy_up_and_fail;
1749
1750 connector = socket(AF_INET, type, 0);
1751 if(connector == -1)
1752 goto tidy_up_and_fail;
1753 /* We want to find out the port number to connect to. */
1754 size = sizeof(connect_addr);
1755 if(getsockname(listener, (struct sockaddr *)&connect_addr, &size) == -1)
1756 goto tidy_up_and_fail;
1757 if(size != sizeof(connect_addr))
1758 goto abort_tidy_up_and_fail;
1759 if(connect(connector, (struct sockaddr *)&connect_addr, sizeof(connect_addr)) == -1)
1760 goto tidy_up_and_fail;
1761
1762 size = sizeof(listen_addr);
1763 acceptor = accept(listener, (struct sockaddr *)&listen_addr, &size);
1764 if(acceptor == -1)
1765 goto tidy_up_and_fail;
1766 if(size != sizeof(listen_addr))
1767 goto abort_tidy_up_and_fail;
1768 close(listener);
1769 /* Now check we are talking to ourself by matching port and host on the
1770 two sockets. */
1771 if(getsockname(connector, (struct sockaddr *)&connect_addr, &size) == -1)
1772 goto tidy_up_and_fail;
1773 if(size != sizeof(connect_addr)
1774 || listen_addr.sin_family != connect_addr.sin_family
1775 || listen_addr.sin_addr.s_addr != connect_addr.sin_addr.s_addr
1776 || listen_addr.sin_port != connect_addr.sin_port)
1777 {
1778 goto abort_tidy_up_and_fail;
1779 }
1780 fd[0] = connector;
1781 fd[1] = acceptor;
1782 return 0;
1783
1784 abort_tidy_up_and_fail:
1785 errno = EINVAL; /* I hope this is portable and appropriate. */
1786
1787 tidy_up_and_fail:
1788 {
1789 int save_errno = errno;
1790 if(listener != -1)
1791 close(listener);
1792 if(connector != -1)
1793 close(connector);
1794 if(acceptor != -1)
1795 close(acceptor);
1796 errno = save_errno;
1797 return -1;
1798 }
1799 }
1800
1801 #endif
1802
1803
1804 static void (*setselect_handler) (rb_fde_t *, unsigned int, PF *, void *);
1805 static int (*select_handler) (long);
1806 static int (*setup_fd_handler) (rb_fde_t *);
1807 static int (*io_sched_event) (struct ev_entry *, int);
1808 static void (*io_unsched_event) (struct ev_entry *);
1809 static int (*io_supports_event) (void);
1810 static void (*io_init_event) (void);
1811 static char iotype[25];
1812
1813 const char *
1814 rb_get_iotype(void)
1815 {
1816 return iotype;
1817 }
1818
1819 static int
1820 rb_unsupported_event(void)
1821 {
1822 return 0;
1823 }
1824
1825 static int
1826 try_kqueue(void)
1827 {
1828 if(!rb_init_netio_kqueue())
1829 {
1830 setselect_handler = rb_setselect_kqueue;
1831 select_handler = rb_select_kqueue;
1832 setup_fd_handler = rb_setup_fd_kqueue;
1833 io_sched_event = rb_kqueue_sched_event;
1834 io_unsched_event = rb_kqueue_unsched_event;
1835 io_init_event = rb_kqueue_init_event;
1836 io_supports_event = rb_kqueue_supports_event;
1837 rb_strlcpy(iotype, "kqueue", sizeof(iotype));
1838 return 0;
1839 }
1840 return -1;
1841 }
1842
1843 static int
1844 try_epoll(void)
1845 {
1846 if(!rb_init_netio_epoll())
1847 {
1848 setselect_handler = rb_setselect_epoll;
1849 select_handler = rb_select_epoll;
1850 setup_fd_handler = rb_setup_fd_epoll;
1851 io_sched_event = rb_epoll_sched_event;
1852 io_unsched_event = rb_epoll_unsched_event;
1853 io_supports_event = rb_epoll_supports_event;
1854 io_init_event = rb_epoll_init_event;
1855 rb_strlcpy(iotype, "epoll", sizeof(iotype));
1856 return 0;
1857 }
1858 return -1;
1859 }
1860
1861 static int
1862 try_ports(void)
1863 {
1864 if(!rb_init_netio_ports())
1865 {
1866 setselect_handler = rb_setselect_ports;
1867 select_handler = rb_select_ports;
1868 setup_fd_handler = rb_setup_fd_ports;
1869 io_sched_event = rb_ports_sched_event;
1870 io_unsched_event = rb_ports_unsched_event;
1871 io_init_event = rb_ports_init_event;
1872 io_supports_event = rb_ports_supports_event;
1873 rb_strlcpy(iotype, "ports", sizeof(iotype));
1874 return 0;
1875 }
1876 return -1;
1877 }
1878
1879 static int
1880 try_devpoll(void)
1881 {
1882 if(!rb_init_netio_devpoll())
1883 {
1884 setselect_handler = rb_setselect_devpoll;
1885 select_handler = rb_select_devpoll;
1886 setup_fd_handler = rb_setup_fd_devpoll;
1887 io_sched_event = NULL;
1888 io_unsched_event = NULL;
1889 io_init_event = NULL;
1890 io_supports_event = rb_unsupported_event;
1891 rb_strlcpy(iotype, "devpoll", sizeof(iotype));
1892 return 0;
1893 }
1894 return -1;
1895 }
1896
1897 static int
1898 try_sigio(void)
1899 {
1900 if(!rb_init_netio_sigio())
1901 {
1902 setselect_handler = rb_setselect_sigio;
1903 select_handler = rb_select_sigio;
1904 setup_fd_handler = rb_setup_fd_sigio;
1905 io_sched_event = rb_sigio_sched_event;
1906 io_unsched_event = rb_sigio_unsched_event;
1907 io_supports_event = rb_sigio_supports_event;
1908 io_init_event = rb_sigio_init_event;
1909
1910 rb_strlcpy(iotype, "sigio", sizeof(iotype));
1911 return 0;
1912 }
1913 return -1;
1914 }
1915
1916 static int
1917 try_poll(void)
1918 {
1919 if(!rb_init_netio_poll())
1920 {
1921 setselect_handler = rb_setselect_poll;
1922 select_handler = rb_select_poll;
1923 setup_fd_handler = rb_setup_fd_poll;
1924 io_sched_event = NULL;
1925 io_unsched_event = NULL;
1926 io_init_event = NULL;
1927 io_supports_event = rb_unsupported_event;
1928 rb_strlcpy(iotype, "poll", sizeof(iotype));
1929 return 0;
1930 }
1931 return -1;
1932 }
1933
1934 static int
1935 try_win32(void)
1936 {
1937 if(!rb_init_netio_win32())
1938 {
1939 setselect_handler = rb_setselect_win32;
1940 select_handler = rb_select_win32;
1941 setup_fd_handler = rb_setup_fd_win32;
1942 io_sched_event = NULL;
1943 io_unsched_event = NULL;
1944 io_init_event = NULL;
1945 io_supports_event = rb_unsupported_event;
1946 rb_strlcpy(iotype, "win32", sizeof(iotype));
1947 return 0;
1948 }
1949 return -1;
1950 }
1951
1952 static int
1953 try_select(void)
1954 {
1955 if(!rb_init_netio_select())
1956 {
1957 setselect_handler = rb_setselect_select;
1958 select_handler = rb_select_select;
1959 setup_fd_handler = rb_setup_fd_select;
1960 io_sched_event = NULL;
1961 io_unsched_event = NULL;
1962 io_init_event = NULL;
1963 io_supports_event = rb_unsupported_event;
1964 rb_strlcpy(iotype, "select", sizeof(iotype));
1965 return 0;
1966 }
1967 return -1;
1968 }
1969
1970
1971 int
1972 rb_io_sched_event(struct ev_entry *ev, int when)
1973 {
1974 if(ev == NULL || io_supports_event == NULL || io_sched_event == NULL
1975 || !io_supports_event())
1976 return 0;
1977 return io_sched_event(ev, when);
1978 }
1979
1980 void
1981 rb_io_unsched_event(struct ev_entry *ev)
1982 {
1983 if(ev == NULL || io_supports_event == NULL || io_unsched_event == NULL
1984 || !io_supports_event())
1985 return;
1986 io_unsched_event(ev);
1987 }
1988
1989 int
1990 rb_io_supports_event(void)
1991 {
1992 if(io_supports_event == NULL)
1993 return 0;
1994 return io_supports_event();
1995 }
1996
1997 void
1998 rb_io_init_event(void)
1999 {
2000 io_init_event();
2001 rb_event_io_register_all();
2002 }
2003
2004 void
2005 rb_init_netio(void)
2006 {
2007 char *ioenv = getenv("LIBRB_USE_IOTYPE");
2008 rb_fd_table = rb_malloc(RB_FD_HASH_SIZE * sizeof(rb_dlink_list));
2009 rb_init_ssl();
2010
2011 if(ioenv != NULL)
2012 {
2013 if(!strcmp("epoll", ioenv))
2014 {
2015 if(!try_epoll())
2016 return;
2017 }
2018 else if(!strcmp("kqueue", ioenv))
2019 {
2020 if(!try_kqueue())
2021 return;
2022 }
2023 else if(!strcmp("ports", ioenv))
2024 {
2025 if(!try_ports())
2026 return;
2027 }
2028 else if(!strcmp("poll", ioenv))
2029 {
2030 if(!try_poll())
2031 return;
2032 }
2033 else if(!strcmp("devpoll", ioenv))
2034 {
2035 if(!try_devpoll())
2036 return;
2037 }
2038 else if(!strcmp("sigio", ioenv))
2039 {
2040 if(!try_sigio())
2041 return;
2042 }
2043 else if(!strcmp("select", ioenv))
2044 {
2045 if(!try_select())
2046 return;
2047 }
2048 if(!strcmp("win32", ioenv))
2049 {
2050 if(!try_win32())
2051 return;
2052 }
2053
2054 }
2055
2056 if(!try_kqueue())
2057 return;
2058 if(!try_epoll())
2059 return;
2060 if(!try_ports())
2061 return;
2062 if(!try_devpoll())
2063 return;
2064 if(!try_sigio())
2065 return;
2066 if(!try_poll())
2067 return;
2068 if(!try_win32())
2069 return;
2070 if(!try_select())
2071 return;
2072
2073 rb_lib_log("rb_init_netio: Could not find any io handlers...giving up");
2074
2075 abort();
2076 }
2077
2078 void
2079 rb_setselect(rb_fde_t *F, unsigned int type, PF * handler, void *client_data)
2080 {
2081 setselect_handler(F, type, handler, client_data);
2082 }
2083
2084 int
2085 rb_select(unsigned long timeout)
2086 {
2087 int ret = select_handler(timeout);
2088 free_fds();
2089 return ret;
2090 }
2091
2092 int
2093 rb_setup_fd(rb_fde_t *F)
2094 {
2095 return setup_fd_handler(F);
2096 }
2097
2098
2099
2100 int
2101 rb_ignore_errno(int error)
2102 {
2103 switch (error)
2104 {
2105 #ifdef EINPROGRESS
2106 case EINPROGRESS:
2107 #endif
2108 #if defined EWOULDBLOCK
2109 case EWOULDBLOCK:
2110 #endif
2111 #if defined(EAGAIN) && (EWOULDBLOCK != EAGAIN)
2112 case EAGAIN:
2113 #endif
2114 #ifdef EINTR
2115 case EINTR:
2116 #endif
2117 #ifdef ERESTART
2118 case ERESTART:
2119 #endif
2120 #ifdef ENOBUFS
2121 case ENOBUFS:
2122 #endif
2123 return 1;
2124 default:
2125 break;
2126 }
2127 return 0;
2128 }
2129
2130
2131 #if defined(HAVE_SENDMSG) && !defined(WIN32)
2132 int
2133 rb_recv_fd_buf(rb_fde_t *F, void *data, size_t datasize, rb_fde_t **xF, int nfds)
2134 {
2135 struct msghdr msg;
2136 struct cmsghdr *cmsg;
2137 struct iovec iov[1];
2138 struct stat st;
2139 uint8_t stype = RB_FD_UNKNOWN;
2140 const char *desc;
2141 rb_platform_fd_t fd, len, x, rfds;
2142
2143 int control_len = CMSG_SPACE(sizeof(int) * nfds);
2144
2145 iov[0].iov_base = data;
2146 iov[0].iov_len = datasize;
2147
2148 msg.msg_name = NULL;
2149 msg.msg_namelen = 0;
2150 msg.msg_iov = iov;
2151 msg.msg_iovlen = 1;
2152 msg.msg_flags = 0;
2153 cmsg = alloca(control_len);
2154 msg.msg_control = cmsg;
2155 msg.msg_controllen = control_len;
2156
2157 if((len = recvmsg(rb_get_fd(F), &msg, 0)) <= 0)
2158 return len;
2159
2160 if(msg.msg_controllen > 0 && msg.msg_control != NULL
2161 && (cmsg = CMSG_FIRSTHDR(&msg)) != NULL)
2162 {
2163 rfds = ((unsigned char *)cmsg + cmsg->cmsg_len - CMSG_DATA(cmsg)) / sizeof(int);
2164
2165 for(x = 0; x < nfds && x < rfds; x++)
2166 {
2167 fd = ((int *)CMSG_DATA(cmsg))[x];
2168 stype = RB_FD_UNKNOWN;
2169 desc = "remote unknown";
2170 if(!fstat(fd, &st))
2171 {
2172 if(S_ISSOCK(st.st_mode))
2173 {
2174 stype = RB_FD_SOCKET;
2175 desc = "remote socket";
2176 }
2177 else if(S_ISFIFO(st.st_mode))
2178 {
2179 stype = RB_FD_PIPE;
2180 desc = "remote pipe";
2181 }
2182 else if(S_ISREG(st.st_mode))
2183 {
2184 stype = RB_FD_FILE;
2185 desc = "remote file";
2186 }
2187 }
2188 xF[x] = rb_open(fd, stype, desc);
2189 }
2190 }
2191 else
2192 *xF = NULL;
2193 return len;
2194 }
2195
2196
2197 int
2198 rb_send_fd_buf(rb_fde_t *xF, rb_fde_t **F, int count, void *data, size_t datasize, pid_t pid)
2199 {
2200 struct msghdr msg;
2201 struct cmsghdr *cmsg;
2202 struct iovec iov[1];
2203 char empty = '0';
2204
2205 memset(&msg, 0, sizeof(msg));
2206 if(datasize == 0)
2207 {
2208 iov[0].iov_base = &empty;
2209 iov[0].iov_len = 1;
2210 }
2211 else
2212 {
2213 iov[0].iov_base = data;
2214 iov[0].iov_len = datasize;
2215 }
2216 msg.msg_iov = iov;
2217 msg.msg_iovlen = 1;
2218 msg.msg_name = NULL;
2219 msg.msg_namelen = 0;
2220 msg.msg_flags = 0;
2221 msg.msg_control = NULL;
2222 msg.msg_controllen = 0;
2223
2224 if(count > 0)
2225 {
2226 size_t ucount = (size_t)count;
2227 int len = CMSG_SPACE(sizeof(int) * count);
2228 char buf[len];
2229
2230 msg.msg_control = buf;
2231 msg.msg_controllen = len;
2232 cmsg = CMSG_FIRSTHDR(&msg);
2233 cmsg->cmsg_level = SOL_SOCKET;
2234 cmsg->cmsg_type = SCM_RIGHTS;
2235 cmsg->cmsg_len = CMSG_LEN(sizeof(int) * count);
2236
2237 for(size_t i = 0; i < ucount; i++)
2238 {
2239 ((int *)CMSG_DATA(cmsg))[i] = rb_get_fd(F[i]);
2240 }
2241 msg.msg_controllen = cmsg->cmsg_len;
2242 return sendmsg(rb_get_fd(xF), &msg, MSG_NOSIGNAL);
2243 }
2244 return sendmsg(rb_get_fd(xF), &msg, MSG_NOSIGNAL);
2245 }
2246 #else
2247 #ifndef _WIN32
2248 int
2249 rb_recv_fd_buf(rb_fde_t *F, void *data, size_t datasize, rb_fde_t **xF, int nfds)
2250 {
2251 errno = ENOSYS;
2252 return -1;
2253 }
2254
2255 int
2256 rb_send_fd_buf(rb_fde_t *xF, rb_fde_t **F, int count, void *data, size_t datasize, pid_t pid)
2257 {
2258 errno = ENOSYS;
2259 return -1;
2260 }
2261 #endif
2262 #endif