]> jfr.im git - solanum.git/blame - wsockd/sha1.c
wsockd: add win32 strcasestr()
[solanum.git] / wsockd / sha1.c
CommitLineData
1160f6c9
AC
1/*
2 * Based on the SHA-1 C implementation by Steve Reid <steve@edmweb.com>
3 * 100% Public Domain
4 *
5 * Test Vectors (from FIPS PUB 180-1)
6 * "abc"
7 * A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
8 * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
9 * 84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
10 * A million repetitions of "a"
11 * 34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
12 */
13
14#include <string.h>
15#ifdef _WIN32
16 #include <winsock2.h> // for htonl()
17#else
18 #include <netinet/in.h> // for htonl()
19#endif
20
21#include "sha1.h"
22
23#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
24
25// blk0() and blk() perform the initial expand. blk0() deals with host endianess
26#define blk0(i) (block[i] = htonl(block[i]))
27#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15]^block[(i+2)&15]^block[i&15],1))
28
29// (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
30#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
31#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
32#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
33#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
34#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
35
36// hash a single 512-bit block. this is the core of the algorithm
37static uint32_t sha1_transform(SHA1 *sha1, const uint8_t buffer[SHA1_BLOCK_LENGTH]) {
38 uint32_t a, b, c, d, e;
39 uint32_t block[SHA1_BLOCK_LENGTH / 4];
40
41 memcpy(&block, buffer, SHA1_BLOCK_LENGTH);
42
43 // copy sha1->state[] to working variables
44 a = sha1->state[0];
45 b = sha1->state[1];
46 c = sha1->state[2];
47 d = sha1->state[3];
48 e = sha1->state[4];
49
50 // 4 rounds of 20 operations each (loop unrolled)
51 R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
52 R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
53 R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
54 R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
55 R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
56
57 R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
58 R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
59 R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
60 R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
61 R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
62
63 R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
64 R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
65 R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
66 R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
67 R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
68
69 R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
70 R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
71 R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
72 R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
73 R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
74
75 // add the working variables back into sha1->state[]
76 sha1->state[0] += a;
77 sha1->state[1] += b;
78 sha1->state[2] += c;
79 sha1->state[3] += d;
80 sha1->state[4] += e;
81
82 // wipe variables
83 a = b = c = d = e = 0;
84
85 return a; // return a to avoid dead-store warning from clang static analyzer
86}
87
88void sha1_init(SHA1 *sha1) {
89 sha1->state[0] = 0x67452301;
90 sha1->state[1] = 0xEFCDAB89;
91 sha1->state[2] = 0x98BADCFE;
92 sha1->state[3] = 0x10325476;
93 sha1->state[4] = 0xC3D2E1F0;
94 sha1->count = 0;
95}
96
97void sha1_update(SHA1 *sha1, const uint8_t *data, size_t length) {
98 size_t i, j;
99
100 j = (size_t)((sha1->count >> 3) & 63);
101 sha1->count += (length << 3);
102
103 if ((j + length) > 63) {
104 i = 64 - j;
105
106 memcpy(&sha1->buffer[j], data, i);
107 sha1_transform(sha1, sha1->buffer);
108
109 for (; i + 63 < length; i += 64) {
110 sha1_transform(sha1, &data[i]);
111 }
112
113 j = 0;
114 } else {
115 i = 0;
116 }
117
118 memcpy(&sha1->buffer[j], &data[i], length - i);
119}
120
121void sha1_final(SHA1 *sha1, uint8_t digest[SHA1_DIGEST_LENGTH]) {
122 uint32_t i;
123 uint8_t count[8];
124
125 for (i = 0; i < 8; i++) {
126 // this is endian independent
127 count[i] = (uint8_t)((sha1->count >> ((7 - (i & 7)) * 8)) & 255);
128 }
129
130 sha1_update(sha1, (uint8_t *)"\200", 1);
131
132 while ((sha1->count & 504) != 448) {
133 sha1_update(sha1, (uint8_t *)"\0", 1);
134 }
135
136 sha1_update(sha1, count, 8);
137
138 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
139 digest[i] = (uint8_t)((sha1->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
140 }
141
142 memset(sha1, 0, sizeof(*sha1));
143}