]> jfr.im git - irc/quakenet/newserv.git/blob - lib/md5.c
A4STATS: remove E style escapes and switch to createtable for indices
[irc/quakenet/newserv.git] / lib / md5.c
1 /*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
6 *
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
11 *
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
16 */
17
18 /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to
19 not require an integer type which is exactly 32 bits. This work
20 draws on the changes for the same purpose by Tatu Ylonen
21 <ylo@cs.hut.fi> as part of SSH, but since I didn't actually use
22 that code, there is no copyright issue. I hereby disclaim
23 copyright in any changes I have made; this code remains in the
24 public domain. */
25
26 #include <string.h> /* for memcpy() and memset() */
27
28 /* Add prototype support. */
29 #ifndef PROTO
30 #if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__)
31 #define PROTO(ARGS) ARGS
32 #else
33 #define PROTO(ARGS) ()
34 #endif
35 #endif
36
37 #include "md5.h"
38
39 /* Little-endian byte-swapping routines. Note that these do not
40 depend on the size of datatypes such as cvs_uint32, nor do they require
41 us to detect the endianness of the machine we are running on. It
42 is possible they should be macros for speed, but I would be
43 surprised if they were a performance bottleneck for MD5. */
44
45 static uint32
46 getu32 (addr)
47 const unsigned char *addr;
48 {
49 return (((((unsigned long)addr[3] << 8) | addr[2]) << 8)
50 | addr[1]) << 8 | addr[0];
51 }
52
53 static void
54 putu32 (data, addr)
55 uint32 data;
56 unsigned char *addr;
57 {
58 addr[0] = (unsigned char)data;
59 addr[1] = (unsigned char)(data >> 8);
60 addr[2] = (unsigned char)(data >> 16);
61 addr[3] = (unsigned char)(data >> 24);
62 }
63
64 /*
65 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
66 * initialization constants.
67 */
68 void
69 MD5Init (ctx)
70 struct MD5Context *ctx;
71 {
72 ctx->buf[0] = 0x67452301;
73 ctx->buf[1] = 0xefcdab89;
74 ctx->buf[2] = 0x98badcfe;
75 ctx->buf[3] = 0x10325476;
76
77 ctx->bits[0] = 0;
78 ctx->bits[1] = 0;
79 }
80
81 /*
82 * Update context to reflect the concatenation of another buffer full
83 * of bytes.
84 */
85 void
86 MD5Update (ctx, buf, len)
87 struct MD5Context *ctx;
88 unsigned char const *buf;
89 unsigned len;
90 {
91 uint32 t;
92
93 /* Update bitcount */
94
95 t = ctx->bits[0];
96 if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
97 ctx->bits[1]++; /* Carry from low to high */
98 ctx->bits[1] += len >> 29;
99
100 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
101
102 /* Handle any leading odd-sized chunks */
103
104 if ( t ) {
105 unsigned char *p = ctx->in + t;
106
107 t = 64-t;
108 if (len < t) {
109 memcpy(p, buf, len);
110 return;
111 }
112 memcpy(p, buf, t);
113 MD5Transform (ctx->buf, ctx->in);
114 buf += t;
115 len -= t;
116 }
117
118 /* Process data in 64-byte chunks */
119
120 while (len >= 64) {
121 memcpy(ctx->in, buf, 64);
122 MD5Transform (ctx->buf, ctx->in);
123 buf += 64;
124 len -= 64;
125 }
126
127 /* Handle any remaining bytes of data. */
128
129 memcpy(ctx->in, buf, len);
130 }
131
132 /*
133 * Final wrapup - pad to 64-byte boundary with the bit pattern
134 * 1 0* (64-bit count of bits processed, MSB-first)
135 */
136 void
137 MD5Final (digest, ctx)
138 unsigned char digest[16];
139 struct MD5Context *ctx;
140 {
141 unsigned count;
142 unsigned char *p;
143
144 /* Compute number of bytes mod 64 */
145 count = (ctx->bits[0] >> 3) & 0x3F;
146
147 /* Set the first char of padding to 0x80. This is safe since there is
148 always at least one byte free */
149 p = ctx->in + count;
150 *p++ = 0x80;
151
152 /* Bytes of padding needed to make 64 bytes */
153 count = 64 - 1 - count;
154
155 /* Pad out to 56 mod 64 */
156 if (count < 8) {
157 /* Two lots of padding: Pad the first block to 64 bytes */
158 memset(p, 0, count);
159 MD5Transform (ctx->buf, ctx->in);
160
161 /* Now fill the next block with 56 bytes */
162 memset(ctx->in, 0, 56);
163 } else {
164 /* Pad block to 56 bytes */
165 memset(p, 0, count-8);
166 }
167
168 /* Append length in bits and transform */
169 putu32(ctx->bits[0], ctx->in + 56);
170 putu32(ctx->bits[1], ctx->in + 60);
171
172 MD5Transform (ctx->buf, ctx->in);
173 putu32(ctx->buf[0], digest);
174 putu32(ctx->buf[1], digest + 4);
175 putu32(ctx->buf[2], digest + 8);
176 putu32(ctx->buf[3], digest + 12);
177 memset(ctx, 0, sizeof(MD5Context)); /* In case it's sensitive */
178 }
179
180 /* The four core functions - F1 is optimized somewhat */
181
182 /* #define F1(x, y, z) (x & y | ~x & z) */
183 #define F1(x, y, z) (z ^ (x & (y ^ z)))
184 #define F2(x, y, z) F1(z, x, y)
185 #define F3(x, y, z) (x ^ y ^ z)
186 #define F4(x, y, z) (y ^ (x | ~z))
187
188 /* This is the central step in the MD5 algorithm. */
189 #define MD5STEP(f, w, x, y, z, data, s) \
190 ( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x )
191
192 /*
193 * The core of the MD5 algorithm, this alters an existing MD5 hash to
194 * reflect the addition of 16 longwords of new data. MD5Update blocks
195 * the data and converts bytes into longwords for this routine.
196 */
197 void
198 MD5Transform (buf, inraw)
199 uint32 buf[4];
200 const unsigned char inraw[64];
201 {
202 register uint32 a, b, c, d;
203 uint32 in[16];
204 int i;
205
206 for (i = 0; i < 16; ++i)
207 in[i] = getu32 (inraw + 4 * i);
208
209 a = buf[0];
210 b = buf[1];
211 c = buf[2];
212 d = buf[3];
213
214 MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
215 MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
216 MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
217 MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
218 MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
219 MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
220 MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
221 MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
222 MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
223 MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
224 MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
225 MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
226 MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
227 MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
228 MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
229 MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
230
231 MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
232 MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
233 MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
234 MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
235 MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
236 MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
237 MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
238 MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
239 MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
240 MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
241 MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
242 MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
243 MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
244 MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
245 MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
246 MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
247
248 MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
249 MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
250 MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
251 MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
252 MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
253 MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
254 MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
255 MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
256 MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
257 MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
258 MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
259 MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
260 MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
261 MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
262 MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
263 MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
264
265 MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
266 MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
267 MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
268 MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
269 MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
270 MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
271 MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
272 MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
273 MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
274 MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
275 MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
276 MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
277 MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
278 MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
279 MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
280 MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
281
282 buf[0] += a;
283 buf[1] += b;
284 buf[2] += c;
285 buf[3] += d;
286 }